ni Crystal structure of a low-spin poly[di-μ3-cyanido-di-μ2-cyanido-bis(μ2-2-ethylpyrazine)dicopper(I)iron(II)] By scripts.iucr.org Published On :: 2019-07-19 In the title metal–organic framework, [Fe(C6H8N2)2{Cu(CN)2}2]n, the low-spin FeII ion lies at an inversion centre and displays an elongated octahedral [FeN6] coordination environment. The axial positions are occupied by two symmetry-related bridging 2-ethylpyrazine ligands, while the equatorial positions are occupied by four N atoms of two pairs of symmetry-related cyanide groups. The CuI centre is coordinated by three cyanide carbon atoms and one N atom of a bridging 2-ethylpyrazine molecule, which form a tetrahedral coordination environment. Two neighbouring Cu atoms have a short Cu⋯Cu contact [2.4662 (7) Å] and their coordination tetrahedra are connected through a common edge between two C atoms of cyanide groups. Each Cu2(CN)2 unit, formed by two neighbouring Cu atoms bridged by two carbons from a pair of μ-CN groups, is connected to six FeII centres via two bridging 2-ethylpyrazine molecules and four cyanide groups, resulting in the formation of a polymeric three-dimensional metal–organic coordination framework. Full Article text
ni Crystal structure and Hirshfeld surface analysis of (E)-4-{[2,2-dichloro-1-(4-methoxyphenyl)ethenyl]diazenyl}benzonitrile By scripts.iucr.org Published On :: 2019-07-16 In the title compound, C16H11Cl2N3O, the 4-methoxy-substituted benzene ring makes a dihedral angle of 41.86 (9)° with the benzene ring of the benzonitrile group. In the crystal, molecules are linked into layers parallel to (020) by C—H⋯O contacts and face-to-face π–π stacking interactions [centroid–centroid distances = 3.9116 (14) and 3.9118 (14) Å] between symmetry-related aromatic rings along the a-axis direction. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from Cl⋯H/H⋯Cl (22.8%), H⋯H (21.4%), N⋯H/H⋯N (16.1%), C⋯H/H⋯C (14.7%) and C⋯C (9.1%) interactions. Full Article text
ni Bis(mefloquinium) butanedioate ethanol monosolvate: crystal structure and Hirshfeld surface analysis By scripts.iucr.org Published On :: 2019-07-12 The asymmetric unit of the centrosymmetric title salt solvate, 2C17H17F6N2O+· C4H4O42−·CH3CH2OH, (systematic name: 2-{[2,8-bis(trifluoromethyl)quinolin-4-yl](hydroxy)methyl}piperidin-1-ium butanedioate ethanol monosolvate) comprises two independent cations, with almost superimposable conformations and each approximating the shape of the letter L, a butanedioate dianion with an all-trans conformation and an ethanol solvent molecule. In the crystal, supramolecular chains along the a-axis direction are sustained by charge-assisted hydroxy-O—H⋯O(carboxylate) and ammonium-N—H⋯O(carboxylate) hydrogen bonds. These are connected into a layer via C—F⋯π(pyridyl) contacts and π–π stacking interactions between quinolinyl-C6 and –NC5 rings of the independent cations of the asymmetric unit [inter-centroid separations = 3.6784 (17) and 3.6866 (17) Å]. Layers stack along the c-axis direction with no directional interactions between them. The analysis of the calculated Hirshfeld surface reveals the significance of the fluorine atoms in surface contacts. Thus, by far the greatest contribution to the surface contacts, i.e. 41.2%, are of the type F⋯H/H⋯F and many of these occur in the inter-layer region. However, these contacts occur at separations beyond the sum of the van der Waals radii for these atoms. It is noted that H⋯H contacts contribute 29.8% to the overall surface, with smaller contributions from O⋯H/H⋯O (14.0%) and F⋯F (5.7%) contacts. Full Article text
ni Crystal structure of catena-poly[[gold(I)-μ-cyanido-[diaquabis(2-phenylpyrazine)iron(II)]-μ-cyanido] dicyanidogold(I)] By scripts.iucr.org Published On :: 2019-07-12 In the title polymeric complex, {[Fe(CN)2(C10H8N2)2(H2O)2][Au(CN)2]}n, the FeII ion, which is located on a twofold rotation axis, has a slightly distorted FeN4O2 octahedral geometry. It is coordinated by two phenylpyrazine molecules, two water molecules and two dicyanoaurate anions, the Au atom also being located on a second twofold rotation axis. In the crystal, the coordinated dicyanoaurate anions bridge the FeII ions to form polymeric chains propagating along the b-axis direction. In the crystal, the chains are linked by Owater—H⋯Ndicyanoaurate anions hydrogen bonds and aurophillic interactions [Au⋯Au = 3.5661 (3) Å], forming layers parallel to the bc plane. The layers are linked by offset π–π stacking interactions [intercentroid distance = 3.643 (3) Å], forming a supramolecular metal–organic framework. Full Article text
ni An unexpected rhenium(IV)–rhenium(VII) salt: [Co(NH3)6]3[ReVIIO4][ReIVF6]4·6H2O By scripts.iucr.org Published On :: 2019-07-12 The title hydrated salt, tris[hexaamminecobalt(III)] tetraoxidorhenate(VII) tetrakis[hexafluoridorhenate(IV)] hexahydrate, arose unexpectedly due to possible contamination of the K2ReF6 starting material with KReO4. It consists of octahedral [Co(NH3)6]3+ cation (Co1 site symmetry 1), tetrahedral [ReVIIO4]− anions (Re site symmetry 1) and octahedral [ReIVF6]2− anions (Re site symmetries 1and overline{3}). The [ReF6]2− octahedral anions (mean Re—F = 1.834 Å), [Co(NH3)6]3+ octahedral cations (mean Co—N = 1.962 Å), and the [ReO4]− tetrahedral anion (mean Re—O = 1.719 Å) are slightly distorted. A network of N—H⋯F hydrogen bonds consolidates the structure. The crystal studied was refined as a two-component twin. Full Article text
ni Crystal structure of (15,20-bis(2,3,4,5,6-pentafluorophenyl)-5,10-{(pyridine-3,5-diyl)bis[(sulfanediylmethylene)[1,1'-biphenyl]-4',2-diyl]}porphyrinato)nickel(II) dichloro By scripts.iucr.org Published On :: 2019-07-12 The crystal structure of the title compound, [Ni(C63H31F10N5S2)]·xCH2Cl2 (x > 1/2), consists of Ni–porphyrin complexes that are located in general positions and dichloromethane solvent molecules that are disordered around centers of inversion. The NiII ions are in a square-pyramidal (CN5) coordination, with four porphyrin N atoms in the equatorial and a pyridine N atom in the apical position and are shifted out of the porphyrine N4 plane towards the coordinating pyridine N atom. The pyridine substituent is not exactly perpendicular to the N4 plane with an angle of intersection between the planes planes of 80.48 (6)°. The dichloromethane solvent molecules are hydrogen bonded to one of the four porphyrine N atoms. Two complexes are linked into dimers by two symmetry-equivalent C—H⋯S hydrogen bonds. These dimers are closely packed, leading to cavities in which additional dichloromethane solvent molecules are embedded. These solvent molecules are disordered and because no reasonable split model was found, the data were corrected for disordered solvent using the PLATON SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18]. Full Article text
ni Crystal structure and Hirshfeld surface analysis of (E)-3-[(4-chlorobenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide By scripts.iucr.org Published On :: 2019-07-12 The title salt, C16H15ClN3S+·Br−, is isotypic with (E)-3-[(4-fluorobenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide [Khalilov et al. (2019). Acta Cryst. E75, 662–666]. In the cation of the title salt, the atoms of the phenyl ring attached to the central thiazolidine ring and the atom joining the thiazolidine ring to the benzene ring are disordered over two sets of sites with occupancies of 0.570 (3) and 0.430 (3). The major and minor components of the disordered thiazolidine ring adopt slightly distorted envelope conformations, with the C atom bearing the phenyl ring as the flap atom. In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br contacts into chains parallel to the a axis. Furthermore, not existing in the earlier report of (E)-3-[(4-fluorobenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide, C—H⋯π interactions and π–π stacking interactions [centroid-to-centroid distance = 3.897 (2) Å] between the major components of the disordered phenyl ring contribute to the stabilization of the molecular packing. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions for the crystal packing are from H⋯H (30.5%), Br⋯H/H⋯Br (21.2%), C⋯H/H⋯C (19.2%), Cl⋯H/H⋯Cl (13.0%) and S⋯H/H⋯S (5.0%) interactions. Full Article text
ni Crystal structures of an imidazo[1,5-a]pyridinium-based ligand and its (C13H12N3)2[CdI4] hybrid salt By scripts.iucr.org Published On :: 2019-07-19 The monocation product of the oxidative condensation–cyclization between two molecules of pyridine-2-carbaldehyde and one molecule of CH3NH2·HCl in methanol, 2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridinium, was isolated in the presence of metal ions as bis[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] tetraiodocadmate, (C13H12N3)2[CdI4], (I), and the mixed chloride/nitrate salt, bis[2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium] 1.5-chloride 0.5-nitrate trihydrate, 2C13H12N3+·1.5Cl−·0.5NO3−·3H2O, (II). Hybrid salt (I) crystallizes in the space group P21/n with two [L]2[CdI4] molecules in the asymmetric unit related by pseudosymmetry. In the crystal of (I), layers of organic cations and of tetrahalometallate anions are stacked parallel to the ab plane. Antiparallel L+ cations disposed in a herring-bone pattern form π-bonded chains through aromatic stacking. In the inorganic layer, adjacent tetrahedral CdI4 units have no connectivity but demonstrate close packing of iodide anions. In the crystal lattice of (II), the cations are arranged in stacks propagating along the a axis; the one-dimensional hydrogen-bonded polymer built of chloride ions and water molecules runs parallel to a column of stacked cations. Full Article text
ni Crystal structures and Hirshfeld surface analyses of the two isotypic compounds (E)-1-(4-bromophenyl)-2-[2,2-dichloro-1-(4-nitrophenyl)ethenyl]diazene and (E)-1-(4-chlorophenyl)-2-[2,2-dichloro-1-(4-ni By scripts.iucr.org Published On :: 2019-07-19 In the two isotypic title compounds, C14H8BrCl2N3O2, (I), and C14H8Cl3N3O2, (II), the substitution of one of the phenyl rings is different [Br for (I) and Cl for (II)]. Aromatic rings form dihedral angles of 60.9 (2) and 64.1 (2)°, respectively. Molecules are linked through weak X⋯Cl contacts [X = Br for (I) and Cl for (II)], C—H⋯Cl and C—Cl⋯π interactions into sheets parallel to the ab plane. Additional van der Waals interactions consolidate the three-dimensional packing. Hirshfeld surface analysis of the crystal structures indicates that the most important contributions for the crystal packing for (I) are from C⋯H/H⋯C (16.1%), O⋯H/H⋯O (13.1%), Cl⋯H/H⋯Cl (12.7%), H⋯H (11.4%), Br⋯H/H⋯Br (8.9%), N⋯H/H⋯N (6.9%) and Cl⋯C/C⋯Cl (6.6%) interactions, and for (II), from Cl⋯H / H⋯Cl (21.9%), C⋯H/H⋯C (15.3%), O⋯H/H⋯O (13.4%), H⋯H (11.5%), Cl⋯C/C⋯Cl (8.3%), N⋯H/H⋯N (7.0%) and Cl⋯Cl (5.9%) interactions. The crystal of (I) studied was refined as an inversion twin, the ratio of components being 0.9917 (12):0.0083 (12). Full Article text
ni (3,5-Dimethyladamantan-1-yl)ammonium methanesulfonate (memantinium mesylate): synthesis, structure and solid-state properties By scripts.iucr.org Published On :: 2019-07-26 The asymmetric unit of the title compound, C12H22N+·CH3O3S−, consists of three (3,5-dimethyladamantan-1-yl)ammonium cations, C12H22N+, and three methanesulfonate anions, CH3O3S−. In the crystal, the cations and anions associate via N—H⋯O hydrogen bonds into layers, parallel to the (001) plane, which include large supramolecular hydrogen-bonded rings. Full Article text
ni 2-Methyl-4-(4-nitrophenyl)but-3-yn-2-ol: crystal structure, Hirshfeld surface analysis and computational chemistry study By scripts.iucr.org Published On :: 2019-07-23 The di-substituted acetylene residue in the title compound, C11H11NO3, is capped at either end by di-methylhydroxy and 4-nitrobenzene groups; the nitro substituent is close to co-planar with the ring to which it is attached [dihedral angle = 9.4 (3)°]. The most prominent feature of the molecular packing is the formation, via hydroxy-O—H⋯O(hydroxy) hydrogen bonds, of hexameric clusters about a site of symmetry overline{3}. The aggregates are sustained by 12-membered {⋯OH}6 synthons and have the shape of a flattened chair. The clusters are connected into a three-dimensional architecture by benzene-C—H⋯O(nitro) interactions, involving both nitro-O atoms. The aforementioned interactions are readily identified in the calculated Hirshfeld surface. Computational chemistry indicates there is a significant energy, primarily electrostatic in nature, associated with the hydroxy-O—H⋯O(hydroxy) hydrogen bonds. Dispersion forces are more important in the other identified but, weaker intermolecular contacts. Full Article text
ni Syntheses and structures of piperazin-1-ium ABr2 (A = Cs or Rb): hybrid solids containing `curtain wall' layers of face- and edge-sharing ABr6 trigonal prisms By scripts.iucr.org Published On :: 2019-07-26 The isostructural title compounds, poly[piperazin-1-ium [di-μ-bromido-caesium]], {(C4H11N2)[CsBr2]}n, and poly[piperazin-1-ium [di-μ-bromido-rubidium]], {(C4H11N2)[RbBr2]}n, contain singly-protonated piperazin-1-ium cations and unusual ABr6 (A = Cs or Rb) trigonal prisms. The prisms are linked into a distinctive `curtain wall' arrangement propagating in the (010) plane by face and edge sharing. In each case, a network of N—H⋯N, N—H⋯Br and N—H⋯(Br,Br) hydrogen bonds consolidates the structure. Full Article text
ni Crystal structure and chemistry of tricadmium digermanium tetraarsenide, Cd3Ge2As4 By scripts.iucr.org Published On :: 2019-08-02 A cadmium germanium arsenide compound, Cd3Ge2As4, was synthesized using a double-containment fused quartz ampoule method within a rocking furnace and a melt-quench technique. The crystal structure was determined from single-crystal X-ray diffraction (SC-XRD), scanning and transmission electron microscopies (i.e. SEM, STEM, and TEM), and selected area diffraction (SAD) and confirmed with electron backscatter diffraction (EBSD). The chemistry was verified with electron energy loss spectroscopy (EELS). Full Article text
ni Crystal structure and Hirshfeld surface analysis of bis(benzoato-κ2O,O')[bis(pyridin-2-yl-κN)amine]nickel(II) By scripts.iucr.org Published On :: 2019-08-13 A new mononuclear NiII complex with bis(pyridin-2-yl)amine (dpyam) and benzoate (benz), [Ni(C7H5O2)2(C10H9N3)], crystallizes in the monoclinic space group P21/c. The NiII ion adopts a cis-distorted octahedral geometry with an [NiN2O4] chromophore. In the crystal, the complex molecules are linked together into a one-dimensional chain by symmetry-related π–π stacking interactions [centroid-to-centroid distance = 3.7257 (17) Å], along with N—H⋯O and C—H⋯O hydrogen bonds. The crystal packing is further stabilized by C—H⋯π interactions, which were investigated by Hirshfeld surface analysis. Full Article text
ni Synthesis and structure of push–pull merocyanines based on barbituric and thiobarbituric acid By scripts.iucr.org Published On :: 2019-08-16 Two compounds, 1,3-diethyl-5-{(2E,4E)-6-[(E)-1,3,3-trimethylindolin-2-ylidene]hexa-2,4-dien-1-ylidene}pyrimidine-2,4,6(1H,3H,5H)-trione or TMI, C25H29N3O3, and 1,3-diethyl-2-sulfanylidene-5-[2-(1,3,3-trimethylindolin-2-ylidene)ethylidene]dihydropyrimidine-4,6(1H,5H)-dione or DTB, C21H25N3O2S, have been crystallized and studied. These compounds contain the same indole derivative donor group and differ in their acceptor groups (in TMI it contains oxygen in the para position, and in DTB sulfur) and the length of the π-bridge. In both materials, molecules are packed in a herringbone manner with differences in the twist and fold angles. In both structures, the molecules are connected by weak C—H⋯O and/or C—H⋯S bonds. Full Article text
ni Crystal structure of tetramethylammonium 1,1,7,7-tetracyanohepta-2,4,6-trienide By scripts.iucr.org Published On :: 2019-08-23 The title compound, C4H12N+·C11H5N4−, contains one tetramethylammonium cation and one 1,1,7,7-tetracyanohepta-2,4,6-trienide anion in the asymmetric unit. The anion is in an all-trans conjugated C=C bonds conformation. Two terminal C(CN)2 dinitrile moieties are slightly twisted from the polymethine main chain to which they are attached [C(CN)2/C5 dihedral angles = 6.1 (2) and 7.1 (1)°]. The C—C bond distances along the heptadienyl chain vary in the narrow range 1.382 (2)–1.394 (2) Å, thus indicating the significant degree of conjugation. In the crystal, the anions are linked into zigzag chains along the [10overline{1}] direction by C—H⋯N(nitrile) short contacts. The antiparallel chains stack along the [110] direction with alternating separations between the neighboring anions in stacks of 3.291 and 3.504 Å. The C—H⋯N short contacts and stacking interactions combine to link the anions into layers parallel to the (overline{1}01) plane and separated by columns of tetramethylammonium cations. Full Article text
ni Crystal structure of a binuclear mixed-valence ytterbium complex containing a 2-anthracene-substituted phenoxide ligand By scripts.iucr.org Published On :: 2019-08-23 Reaction of 2-(anthracen-9-yl)phenol (HOPhAn, 1) with divalent Yb[N(SiMe3)2]2·2THF in THF–toluene mixtures affords the mixed-valence YbII–YbIII dimer {[2-(anthracen-9-yl)phenolato-κO]bis(tetrahydrofuran)ytterbium(III)}-tris[μ-2-(anthracen-9-yl)phenolato]-κ4O:O;κO:1,2-η,κO-{[2-(anthracen-9-yl)phenolato-κO]ytterbium(II)} toluene trisolvate, [Yb2(C20H13O)5(C4H8O)2]·3C7H7 or [YbIII(THF)2(OPhAn)](μ-OPhAn)3[YbII(OPhAn)]·3C7H7 (2), as the major product. It crystallized as a toluene trisolvate. The Yb—O bond lengths in the crystal structure of this dimer clearly identify the YbII and YbIII centres. Interestingly, the formally four-coordinate YbII centre shows a close contact with one anthracene C—C bond of a bridging OPhAn ligand, bringing the formal coordination number to five. Full Article text
ni The structure and Hirshfeld surface analysis of the salt 3-methacrylamido-N,N,N-trimethylpropan-1-aminium 2-acrylamido-2-methylpropane-1-sulfonate By scripts.iucr.org Published On :: 2019-09-10 The title salt, C10H21N2O+·C7H12NO4S−, comprises a 3-methacrylamido-N,N,N-trimethylpropan-1-aminium cation and a 2-acrylamido-2-methylpropane-1-sulfonate anion. The salt crystallizes with two unique cation–anion pairs in the asymmetric unit of the orthorhombic unit cell. The crystal studied was an inversion twin with a 0.52 (4):0.48 (4) domain ratio. In the crystal, the cations and anions stack along the b-axis direction and are linked by an extensive series of N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network. Hirshfeld surface analysis was carried out on both the asymmetric unit and the two individual salts. The contribution of interatomic contacts to the surfaces of the individual cations and anions are also compared. Full Article text
ni Crystal structure of 4-bromo-N-[(3,6-di-tert-butyl-9H-carbazol-1-yl)methylidene]aniline By scripts.iucr.org Published On :: 2019-09-10 In the title compound, C27H29BrN2, the carbazole ring system is essentially planar, with an r.m.s. deviation of 0.0781 (16) Å. An intramolecular N—H⋯N hydrogen bond forms an S(6) ring motif. One of the tert-butyl substituents shows rotational disorder over two sites with occupancies of 0.592 (3) and 0.408 (3). In the crystal, two molecules are associated into an inversion dimer through a pair of C—H⋯π interactions. The dimers are further linked by another pair of C—H⋯π interactions, forming a ribbon along the c-axis direction. A C—H⋯π interaction involving the minor disordered component and the carbazole ring system links the ribbons, generating a network sheet parallel to (100). Full Article text
ni Crystal structure of bis[2-(1H-benzimidazol-2-yl-κN3)aniline-κN]bis(nitrato-κO)cadmium(II) By scripts.iucr.org Published On :: 2019-09-12 In the title compound, [Cd(NO3)2(C13H11N3)2], the CdII atom lies on a twofold rotation axis and is coordinated by four N atoms and two O atoms, provided by two bidentate 2-(1H-benzimidazol-2-yl)aniline ligands, and two nitrato O atoms, forming a distorted octahedral geometry [range of bond angles around the Cd atom = 73.82 (2)–106.95 (8)°]. In the ligand, the dihedral angle between the aniline ring and the benzimidazole ring system is 30.43 (7)°. The discrete complex molecule is stabilized by an intramolecular N—H⋯O hydrogen bond. In the crystal, intermolecular N—H⋯O hydrogen bonds link the molecules, forming a three-dimensional network. Full Article text
ni Crystal structure of (15,20-bis(2,3,4,5,6-pentafluorophenyl)-5,10-{(4-methylpyridine-3,5-diyl)bis[(sulfanediylmethylene)[1,1'-biphenyl]-4',2-diyl]}porphyrinato)nickel(II) dichloro By scripts.iucr.org Published On :: 2019-09-27 The title compound, [Ni(C64H33F10N5S2)]·xCH2Cl2, consists of discrete NiII porphyrin complexes, in which the five-coordinate NiII cations are in a distorted square-pyramidal coordination geometry. The four porphyrin nitrogen atoms are located in the basal plane of the pyramid, whereas the pyridine N atom is in the apical position. The porphyrin plane is strongly distorted and the NiII cation is located above this plane by 0.241 (3) Å and shifted in the direction of the coordinating pyridine nitrogen atom. The pyridine ring is not perpendicular to the N4 plane of the porphyrin moiety, as observed for related compounds. In the crystal, the complexes are linked via weak C—H⋯F hydrogen bonds into zigzag chains propagating in the [001] direction. Within this arrangement cavities are formed, in which highly disordered dichloromethane solvate molecules are located. No reasonable structural model could be found to describe this disorder and therefore the contribution of the solvent to the electron density was removed using the SQUEEZE option in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. Full Article text
ni The crystal structure of the zwitterionic co-crystal of 2,4-dichloro-6-{[(3-hydroxypropyl)azaniumyl]methyl}phenolate and 2,4-dichlorophenol By scripts.iucr.org Published On :: 2019-09-10 The title compound, C10H13Cl2NO2·C6H4Cl2O, was formed from the incomplete Mannich condensation reaction of 3-aminopropan-1-ol, formaldehyde and 2,4-dichlorophenol in methanol. This resulted in the formation of a co-crystal of the zwitterionic Mannich base, 2,4-dichloro-6-{[(3-hydroxypropyl)azaniumyl]methyl}phenolate and the unreacted 2,4-dichlorophenol. The compound crystallizes in the monoclinic crystal system (in space group Cc) and the asymmetric unit contains a molecule each of the 2,4-dichlorophenol and 2,4-dichloro-6-{[(3-hydroxypropyl)azaniumyl]methyl}phenolate. Examination of the crystal structure shows that the two components are clearly linked together by hydrogen bonds. The packing patterns are most interesting along the b and the c axes, where the co-crystal in the unit cell packs in a manner that shows alternating aromatic dichlorophenol fragments and polar hydrogen-bonded channels. The 2,4-dichlorophenol rings stack on top of one another, and these are held together by π–π interactions. The crystal studied was refined as an inversion twin. Full Article text
ni The crystal structure of ((cyclohexylamino){(Z)-2-[(E)-5-methoxy-3-nitro-2-oxidobenzylidene-κO]hydrazin-1-ylidene-κN2}methanethiolato-κS)(dimethyl sulfoxide-κS)platinum(II): a supramolecular two-dimens By scripts.iucr.org Published On :: 2019-09-12 The PtII atom in the title complex, [Pt(C15H18N4O4S)(C2H6OS)], exists within a square-planar NS2O donor set provided by the N, S, O atoms of the di-anionic tridentate thiosemicarbazo ligand and a dimethyl sulfoxide S atom. The two chelate rings are coplanar, subtending a dihedral angle of 1.51 (7)°. The maximum deviation from an ideal square-planar geometry is seen in the five-membered chelate ring with an S—Pt—S bite angle of 96.45 (2)°. In the crystal, molecules are linked via N—H⋯O, C—H⋯O, C—H⋯N and C—H⋯π interactions into two-dimensional networks lying parallel to the ab plane. The conformations of related cyclohexylhydrazine-1-carbothioamide ligands are compared to that of the title compound. Full Article text
ni Crystal structure and Hirshfeld surface analysis of bis[hydrazinium(1+)] hexafluoridosilicate: (N2H5)2SiF6 By scripts.iucr.org Published On :: 2019-09-20 In the title inorganic molecular salt, (N2H5)2SiF6, the silicon atom at the centre of the slightly distorted SiF6 octahedron [range of Si—F distances = 1.6777 (4)–1.7101 (4) Å] lies on a crystallographic inversion centre. In the crystal, the ions are connected by N—H⋯N and N—H⋯F hydrogen bonds; the former link the cations into [010] chains and the latter (some of which are bifurcated or trifurcated) link the ions into a three-dimensional network. The two-dimensional fingerprint plots show that F⋯H/H⋯F interactions dominate the Hirshfeld surface (75.5%) followed by H⋯H (13.6%) and N⋯H/H⋯N (8.4%) whereas F⋯F (1.9%) and F⋯N/N⋯F (0.6%) have negligible percentages. The title compound is isostructural with its germanium-containing analogue. Full Article text
ni Twelve 4-(4-methoxyphenyl)piperazin-1-ium salts containing organic anions: supramolecular assembly in one, two and three dimensions By scripts.iucr.org Published On :: 2019-09-20 Twelve 4-(4-methoxyphenyl)piperazin-1-ium salts containing organic anions have been prepared and structurally characterized. The monohydrated benzoate, 4-fluorobenzoate, 4-chlorobenzoate and 4-bromobenzoate salts, C11H17N2O+·C7H5O2−·H2O (I), C11H17N2O+·C7H4FO2−·H2O (II), C11H17N2O+·C7H4ClO2−·H2O (III), and C11H17N2O+·C7H4BrO2−·H2O (IV), respectively, are isomorphous and all exhibit disorder in the 4-methoxyphenyl unit: the components are linked by N—H⋯O and O—H⋯O hydrogen bond to form chains of rings. The unsolvated 2-hydroxybenzoate, pyridine-3-carboxylate and 2-hydroxy-3,5-dinitrobenzoate salts, C11H17N2O+·C7H5O3− (V), C11H17N2O+·C6H4NO2− (VI) and C11H17N2O+·C7H3N2O7− (VII), respectively, are all fully ordered: the components of (V) are linked by multiple N—H⋯O hydrogen bonds to form a chain of rings; those of (VI) are linked into a three-dimensional framework by a combination of N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds and those of (VII), where the anion has a structure reminiscent of the picrate anion, are linked into a three-dimensional array by N—H⋯O and C—H⋯O hydrogen bonds. The hydrogensuccinate and hydrogenfumarate salts, C11H17N2O+·C4H5O4− (VIII) and C11H17N2O+·C4H3O3− (IX), respectively, are isomorphous, and both exhibit disorder in the anionic component: N—H⋯O and O—H⋯O hydrogen bonds link the ions into sheets, which are further linked by C—H⋯π(arene) interactions. The anion of the hydrogenmaleate salt, C11H17N2O+·C4H3O3− (X), contains a very short and nearly symmetrical O⋯H⋯O hydrogen bond, and N—H⋯O hydrogen bonds link the anions into chains of rings. The ions in the trichloroacetate salt, C11H17N2O+·C2Cl3O2− (XI), are linked into simple chains by N—H⋯O hydrogen bonds. In the hydrated chloranilate salt, 2C11H17N2O+·C6Cl2O42−·2H2O (XII), which crystallizes as a non-merohedral twin, the anion lies across a centre of inversion in space group P21/n, and a combination of N—H⋯O and O—H⋯O hydrogen bonds generates complex sheets. Comparisons are made with the structures of some related compounds. Full Article text
ni Crystal structures of 3-chloro-2-nitrobenzoic acid with quinoline derivatives: 3-chloro-2-nitrobenzoic acid–5-nitroquinoline (1/1), 3-chloro-2-nitrobenzoic acid–6-nitroquinoline (1/1) and 8-hydroxyquinolinium 3-ch By scripts.iucr.org Published On :: 2019-09-27 The structures of three compounds of 3-chloro-2-nitrobenzoic acid with 5-nitroquinoline, (I), 6-nitroquinoline, (II), and 8-hydroxyquinoline, (III), have been determined at 190 K. In each of the two isomeric compounds, (I) and (II), C7H4ClNO4·C9H6N2O2, the acid and base molecules are held together by O—H⋯N and C—H⋯O hydrogen bonds. In compound (III), C9H8NO+·C7H3ClNO4−, an acid–base interaction involving H-atom transfer occurs and the H atom is located at the N site of the base molecule. In the crystal of (I), the hydrogen-bonded acid–base units are linked by C—H⋯O hydrogen bonds, forming a tape structure along the b-axis direction. Adjacent tapes, which are related by a twofold rotation axis, are linked by a third C—H⋯O hydrogen bond, forming wide ribbons parallel to the (overline{1}03) plane. These ribbons are stacked via π–π interactions between the quinoline ring systems [centroid–centroid distances = 3.4935 (5)–3.7721 (6) Å], forming layers parallel to the ab plane. In the crystal of (II), the hydrogen-bonded acid–base units are also linked into a tape structure along the b-axis direction via C—H⋯O hydrogen bonds. Inversion-related tapes are linked by further C—H⋯O hydrogen bonds to form wide ribbons parallel to the (overline{3}08) plane. The ribbons are linked by weak π–π interactions [centroid–centroid distances = 3.8016 (8)–3.9247 (9) Å], forming a three-dimensional structure. In the crystal of (III), the cations and the anions are alternately linked via N—H⋯O and O—H⋯O hydrogen bonds, forming a 21 helix running along the b-axis direction. The cations and the anions are further stacked alternately in columns along the a-axis direction via π–π interactions [centroid–centroid distances = 3.8016 (8)–3.9247 (9) Å], and the molecular chains are linked into layers parallel to the ab plane through these interactions. Full Article text
ni The crystal structures and Hirshfeld surface analysis of 6-(naphthalen-1-yl)-6a-nitro-6,6a,6b,7,9,11a-hexahydrospiro[chromeno[3',4':3,4]pyrrolo[1,2-c]thiazole-11,11'-indeno[1,2-b]quinoxaline] and 6'-(naphthalen-1-yl)-6a By scripts.iucr.org Published On :: 2019-09-27 The title compounds, 6-(naphthalen-1-yl)-6a-nitro-6,6a,6 b,7,9,11a-hexahydrospiro[chromeno[3',4':3,4]pyrrolo[1,2-c]thiazole-11,11'-indeno[1,2-b]quinoxaline], C37H26N4O3S, (I), and 6'-(naphthalen-1-yl)-6a'-nitro-6',6a',6b',7',8',9',10',12a'-octahydro-2H-spiro[acenaphthylene-1,12'-chromeno[3,4-a]indolizin]-2-one, C36H28N2O4, (II), are new spiro derivatives, in which both the pyrrolidine rings adopt twisted conformations. In (I), the five-membered thiazole ring adopts an envelope conformation, while the eight-membered pyrrolidine-thiazole ring adopts a boat conformation. An intramolecular C—H⋯N hydrogen bond occurs, involving a C atom of the pyran ring and an N atom of the pyrazine ring. In (II), the six-membered piperidine ring adopts a chair conformation. An intramolecular C—H⋯O hydrogen bond occurs, involving a C atom of the pyrrolidine ring and the keto O atom. For both compounds, the crystal structure is stabilized by intermolecular C—H⋯O hydrogen bonds. In (I), the C—H⋯O hydrogen bonds link adjacent molecules, forming R22(16) loops propagating along the b-axis direction, while in (II) they form zigzag chains along the b-axis direction. In both compounds, C—H⋯π interactions help to consolidate the structure, but no significant π–π interactions with centroid–centroid distances of less than 4 Å are observed. Full Article text
ni Crystal structure of poly[[diaquatetra-μ2-cyanido-iron(II)platinum(II)] acetone disolvate] By scripts.iucr.org Published On :: 2019-09-27 In the title polymeric complex, {[FePt(CN)4(H2O)2]·2C3H6O}n, the FeII cation has an octahedral [FeN4O2] geometry being coordinated by two water molecules and four cyanide anions. The Pt cation is located on an inversion centre and has a square-planar coordination environment formed by four cyanide groups. The tetracyanoplatinate anions bridge the FeII cations to form infinite two-dimensional layers that propagate in the bc plane. Two guest molecules of acetone per FeII are located between the layers. These guest acetone molecules interact with the coordinated water molecules by O—H⋯O hydrogen bonds. Full Article text
ni Crystal structure and Hirshfeld surface analysis of 2-aminopyridinium hydrogen phthalate By scripts.iucr.org Published On :: 2019-10-08 Aminopyridine and phthalic acid are well known synthons for supramolecular architectures for the synthesis of new materials for optical applications. The 2-aminopyridinium hydrogen phthalate title salt, C5H7N2+·C8H5O4−, crystallizes in the non-centrosymmetric space group P21. The nitrogen atom of the –NH2 group in the cation deviates from the fitted pyridine plane by 0.035 (7) Å. The plane of the pyridinium ring and phenyl ring of the anion are oriented at an angle of 80.5 (3)° to each other in the asymmetric unit. The anion features a strong intramolecular O—H⋯O hydrogen bond, forming a self-associated S(7) ring motif. The crystal packing is dominated by intermolecular N—H⋯O hydrogen bonds leading to the formation of 21 helices, with a C(11) chain motif. They propagate along the b axis and enclose R22(8) ring motifs. The helices are linked by C—H⋯O hydrogen bonds, forming layers parallel to the ab plane. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to investigate and quantify the intermolecular interactions in the crystal. Full Article text
ni In situ decarbonylation of N,N-dimethylformamide to form dimethylammonium cations in the hybrid framework compound {[(CH3)2NH2]2[Zn{O3PC6H2(OH)2PO3}]}n By scripts.iucr.org Published On :: 2019-09-27 The title phosphonate-based organic–inorganic hybrid framework, poly[bis(dimethylammonium) [(μ4-2,5-dihydroxybenzene-1,4-diphosphonato)zinc(II)]], {(C2H8N)2[Zn(C6H4O8P2)]}n, was formed unexpectedly when dimethylammonium cations were formed from the in situ decarbonylation of the N,N-dimethylformamide solvent. The framework is built up from ZnO4 tetrahedra and bridging diphosphonate tetra-anions to generate a three-dimensional network comprising [100] channels occupied by the (CH3)2NH2+ cations. Within the channels, an array of N—H⋯O hydrogen bonds help to establish the structure. In addition, intramolecular O—H⋯O hydrogen bonds between the appended –OH groups of the phenyl ring and adjacent PO32− groups are observed. Full Article text
ni Crystal structure and Hirshfeld surface analysis of 3-amino-5-phenylthiazolidin-2-iminium bromide By scripts.iucr.org Published On :: 2019-09-27 In the cation of the title salt, C9H12N3S+·Br−, the thiazolidine ring adopts an envelope conformation with the C atom adjacent to the phenyl ring as the flap. In the crystal, N—H⋯Br hydrogen bonds link the components into a three-dimensional network. Weak π–π stacking interactions between the phenyl rings of adjacent cations also contribute to the molecular packing. A Hirshfeld surface analysis was conducted to quantify the contributions of the different intermolecular interactions and contacts. Full Article text
ni Crystal structure, Hirshfeld surface analysis and physicochemical characterization of bis[4-(dimethylamino)pyridinium] di-μ-chlorido-bis[dichloridomercurate(II)] By scripts.iucr.org Published On :: 2019-10-03 The title molecular salt, (C7H11N2)2[Hg2Cl6], crystallizes with two 4-(dimethylamino)pyridinium cations (A and B) and two half hexachloridodimercurate(II) anions in the asymmetric unit. The organic cations exhibit essentially the same features with an almost planar pyridyl ring (r.m.s. deviations of 0.0028 and 0.0109 Å), which forms an inclined dihedral angle with the dimethyamino group [3.06 (1) and 1.61 (1)°, respectively]. The dimethylamino groups in the two cations are planar, and the C—N bond lengths are shorter than that in 4-(dimethylamino)pyridine. In the crystal, mixed cation–anion layers lying parallel to the (010) plane are formed through N—H⋯Cl hydrogen bonds and adjacent layers are linked by C—H⋯Cl hydrogen bonds, forming a three-dimensional network. The analyses of the calculated Hirshfeld surfaces confirm the relevance of the above intermolecular interactions, but also serve to further differentiate the weaker intermolecular interactions formed by the organic cations and inorganic anions, such as π–π and Cl⋯Cl interactions. The powder XRD data confirms the phase purity of the crystalline sample. Furthermore, the vibrational absorption bands were identified by IR spectroscopy and the optical properties were studied by using optical UV–visible absorption spectroscopy. Full Article text
ni The crystal structures of two novel polymorphs of bis(oxonium) ethane-1,2-disulfonate By scripts.iucr.org Published On :: 2019-10-03 Two novel crystal forms of bis(oxonium) ethane-1,2-disulfonate, 2H3O−·C2H4O6S22−, are reported. Polymorph II has monoclinic (P21/n) symmetry, while the symmetry of form III is triclinic (Poverline{1}). Both structures display extensive networks of O—H⋯O hydrogen bonds. While this network in Form II is similar to that observed for the previously reported Form I [Mootz & Wunderlich (1970). Acta Cryst. B26, 1820–1825; Sartori et al. (1994). Z. Naturforsch. 49, 1467–1472] and extends in all directions, in Form III it differs significantly, forming layers parallel to the ab plane. The sulfonate molecule in all three forms adopts a nearly identical geometry. The other observed differences between the forms, apart from the hydrogen-bonding network, are observed in the crystal density and packing index. Full Article text
ni Tetra-n-butylammonium orotate monohydrate: knowledge-based comparison of the results of accurate and lower-resolution analyses and a non-routine disorder refinement By scripts.iucr.org Published On :: 2019-10-08 The title hydrated molecular salt (systematic name: tetra-n-butylammonium 2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylate monohydrate), C16H36N+·C5H3N2O4−·H2O, crystallizes with N—H⋯O and O—H⋯O hydrogen-bonded double-stranded antiparallel ribbons consisting of the hydrophilic orotate monoanions and water molecules, separated by the bulky hydrophobic cations. The hydrophobic and hydrophilic regions of the structure are joined by weaker non-classical C—H⋯O hydrogen bonds. An accurate structure analysis conducted at T = 100 K is compared to a lower-resolution less accurate determination using data measured at T = 295 K. The results of both analyses are evaluated using a knowledge-based approach, and it is found that the less accurate room-temperature structure analysis provides geometric data that are similar to those derived from the accurate low-temperature analysis, with both sets of results consistent with previously analyzed structures. A minor disorder of one methyl group in the cation at low temperature was found to be slightly more complex at room temperature; while still involving a minor fraction of the structure, the disorder at room temperature was found to require a non-routine treatment, which is described in detail. Full Article text
ni Crystal structure, DFT and Hirshfeld surface analysis of 2-amino-4-(2-chlorophenyl)-7-hydroxy-4H-benzo[1,2-b]pyran-3-carbonitrile By scripts.iucr.org Published On :: 2019-10-22 The benzopyran ring of the title compound, C16H11ClN2O2, is planar [maximum deviation = 0.079 (2) Å] and is almost perpendicular to the chlorophenyl ring [dihedral angle = 86.85 (6)°]. In the crystal, N—H⋯O, O—H⋯N, C—H⋯O and C—H⋯Cl hydrogen bonds form inter- and intramolecular interactions. The DFT/B3LYP/6-311G(d,p) method was used to determine the HOMO–LUMO energy levels. The molecular electrostatic potential surfaces were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyse the intermolecular interactions in the molecule. Full Article text
ni Bis[2-(4,5-diphenyl-1H-imidazol-2-yl)-4-nitrophenolato]copper(II) dihydrate: crystal structure and Hirshfeld surface analysis By scripts.iucr.org Published On :: 2019-10-22 The crystal and molecular structures of the title CuII complex, isolated as a dihydrate, [Cu(C21H14N3O3)2]·2H2O, reveals a highly distorted coordination geometry intermediate between square-planar and tetrahedral defined by an N2O2 donor set derived from two mono-anionic bidentate ligands. Furthermore, each six-membered chelate ring adopts an envelope conformation with the Cu atom being the flap. In the crystal, imidazolyl-amine-N—H⋯O(water), water-O—H⋯O(coordinated, nitro and water), phenyl-C—H⋯O(nitro) and π(imidazolyl)–π(nitrobenzene) [inter-centroid distances = 3.7452 (14) and 3.6647 (13) Å] contacts link the components into a supramolecular layer lying parallel to (101). The connections between layers forming a three-dimensional architecture are of the types nitrobenzene-C—H⋯O(nitro) and phenyl-C—H⋯π(phenyl). The distorted coordination geometry for the CuII atom is highlighted in an analysis of the Hirshfeld surface calculated for the metal centre alone. The significance of the intermolecular contacts is also revealed in a study of the calculated Hirshfeld surfaces; the dominant contacts in the crystal are H⋯H (41.0%), O⋯H/H⋯O (27.1%) and C⋯H/H⋯C (19.6%). Full Article text
ni Crystal structure, synthesis and thermal properties of bis(acetonitrile-κN)bis(4-benzoylpyridine-κN)bis(isothiocyanato-κN)nickel(II) By scripts.iucr.org Published On :: 2019-10-22 In the crystal structure of the title compound, [Ni(NCS)2(CH3CN)2(C12H9NO)2] or Ni(NCS)2(4-benzoylpyridine)2(acetonitrile)2, the NiII ions are octahedrally coordinated by the N atoms of two thiocyanate anions, two 4-benzoylpyridine ligands and two acetonitrile molecules into discrete complexes that are located on centres of inversion. In the crystal, the discrete complexes are linked by centrosymmetric pairs of weak C—H⋯S hydrogen bonds into chains. Thermogravimetric measurements prove that, upon heating, the title complex loses the two acetonitrile ligands and transforms into a new crystalline modification of the chain compound [Ni(NCS)2(4-benzoylpyridine)2], which is different from that of the corresponding CoII, NiII and CdII coordination polymers reported in the literature. IR spectroscopic investigations indicate the presence of bridging thiocyanate anions but the powder pattern cannot be indexed and, therefore, this structure is unknown. Full Article text
ni The first structural characterization of the protonated azacyclam ligand in catena-poly[[[(perchlorato)copper(II)]-μ-3-(3-carboxypropyl)-1,5,8,12-tetraaza-3-azoniacyclotetradecane] bis(per& By scripts.iucr.org Published On :: 2019-10-22 The asymmetric unit of the title compound, catena-poly[[[(perchlorato-κO)copper(II)]-μ-3-(3-carboxypropyl)-1,5,8,12-tetraaza-3-azoniacyclotetradecane-κ4N1,N5,N8,N12] bis(perchlorate)], {[Cu(C13H30N5O2)(ClO4)](ClO4)2}n, (I), consists of a macrocyclic cation, one coordinated perchlorate anion and two perchlorate ions as counter-anions. The metal ion is coordinated in a tetragonally distorted octahedral geometry by the four secondary N atoms of the macrocyclic ligand, the mutually trans O atoms of the perchlorate anion and the carbonyl O atom of the protonated carboxylic acid group of a neighbouring cation. The average equatorial Cu—N bond lengths [2.01 (6) Å] are significantly shorter than the axial Cu—O bond lengths [2.379 (8) Å for carboxylate and average 2.62 (7) Å for disordered perchlorate]. The coordinated macrocyclic ligand in (I) adopts the most energetically favourable trans-III conformation with an equatorial orientation of the substituent at the protonated distal 3-position N atom in a six-membered chelate ring. The coordination of the carboxylic acid group of the cation to a neighbouring complex unit results in the formation of infinite chains running along the b-axis direction, which are crosslinked by N—H⋯O hydrogen bonds between the secondary amine groups of the macrocycle and O atoms of the perchlorate counter-anions to form sheets lying parallel to the (001) plane. Additionally, the extended structure of (I) is consolidated by numerous intra- and interchain C—H⋯O contacts. Full Article text
ni Crystal structures and hydrogen-bonding analysis of a series of solvated ammonium salts of molybdenum(II) chloride clusters By scripts.iucr.org Published On :: 2019-10-22 Charge-assisted hydrogen bonding plays a significant role in the crystal structures of solvates of ionic compounds, especially when the cation or cations are primary ammonium salts. We report the crystal structures of four ammonium salts of molybdenum halide cluster solvates where we observe significant hydrogen bonding between the solvent molecules and cations. The crystal structures of bis(anilinium) octa-μ3-chlorido-hexachlorido-octahedro-hexamolybdate N,N-dimethylformamide tetrasolvate, (C6H8N)2[Mo6Cl8Cl6]·4C3H7NO, (I), p-phenylenediammonium octa-μ3-chlorido-hexachlorido-octahedro-hexamolybdate N,N-dimethylformamide hexasolvate, (C6H10N2)[Mo6Cl8Cl6]·6C3H7NO, (II), N,N'-(1,4-phenylene)bis(propan-2-iminium) octa-μ3-chlorido-hexachlorido-octahedro-hexamolybdate acetone trisolvate, (C12H18N2)[Mo6Cl8Cl6]·3C3H6O, (III), and 1,1'-dimethyl-4,4'-bipyridinium octa-μ3-chlorido-hexachlorido-octahedro-hexamolybdate N,N-dimethylformamide tetrasolvate, (C12H14N2)[Mo6Cl8Cl6]·4C3H7NO, (IV), are reported and described. In (I), the anilinium cations and N,N-dimethylformamide (DMF) solvent molecules form a cyclic R42(8) hydrogen-bonded motif centered on a crystallographic inversion center with an additional DMF molecule forming a D(2) interaction. The p-phenylenediammonium cation in (II) forms three D(2) interactions between the three N—H bonds and three independent N,N-dimethylformamide molecules. The dication in (III) is a protonated Schiff base solvated by acetone molecules. Compound (IV) contains a methyl viologen dication with N,N-dimethylformamide molecules forming close contacts with both aromatic and methyl H atoms. Full Article text
ni Crystal structure of a 1:1 cocrystal of nicotinamide with 2-chloro-5-nitrobenzoic acid By scripts.iucr.org Published On :: 2019-10-22 In the title 1:1 cocrystal, C7H4ClNO4·C6H6N2O, nicotinamide (NIC) and 2-chloro-5-nitrobenzoic acid (CNBA) cocrystallize with one molecule each of NIC and CNBA in the asymmetric unit. In this structure, CNBA and NIC form hydrogen bonds through O—H⋯N, N—H⋯O and C—H⋯O interactions along with N—H⋯O dimer hydrogen bonds of NIC. Further additional weak π–π interactions stabilize the molecular assembly of this cocrystal. Full Article text
ni Crystal structures of the two isomeric hydrogen-bonded cocrystals 2-chloro-4-nitrobenzoic acid–5-nitroquinoline (1/1) and 5-chloro-2-nitrobenzoic acid–5-nitroquinoline (1/1) By scripts.iucr.org Published On :: 2019-10-22 The structures of two isomeric compounds of 5-nitroquinoline with chloro- and nitro-substituted benzoic acid, namely, 2-chloro-4-nitrobenzoic acid–5-nitroquinoline (1/1), (I), and 5-chloro-2-nitrobenzoic acid–5-nitroquinoline (1/1), (II), both C7H4ClNO4·C9H6N2O2, have been determined at 190 K. In each compound, the acid and base molecules are held together by an O—H⋯N hydrogen bond. In the crystal of (I), the hydrogen-bonded acid–base units are linked by a C—H⋯O hydrogen bond, forming a tape structure along [1overline{2}0]. The tapes are stacked into a layer parallel to the ab plane via N—O⋯π interactions between the nitro group of the base molecule and the quinoline ring system. The layers are further linked by other C—H⋯O hydrogen bonds, forming a three-dimensional network. In the crystal of (II), the hydrogen-bonded acid–base units are linked into a wide ribbon structure running along [1overline{1}0] via C—H⋯O hydrogen bonds. The ribbons are further linked via another C—H⋯O hydrogen bond, forming a layer parallel to (110). Weak π–π interactions [centroid–centroid distances of 3.7080 (10) and 3.7543 (9) Å] are observed between the quinoline ring systems of adjacent layers. Hirshfeld surfaces for the 5-nitroquinoline molecules of the two compounds mapped over shape index and dnorm were generated to visualize the weak intermolecular interactions. Full Article text
ni Crystal structure, Hirshfeld surface analysis and PIXEL calculations of a 1:1 epimeric mixture of 3-[(4-nitrobenzylidene)amino]-2(R,S)-(4-nitrophenyl)-5(S)-(propan-2-yl)imidazolidin-4-one By scripts.iucr.org Published On :: 2019-10-29 A 1:1 epimeric mixture of 3-[(4-nitrobenzylidene)amino]-2(R,S)-(4-nitrophenyl)-5(S)-(propan-2-yl)imidazolidin-4-one, C19H19N5O5, was isolated from a reaction mixture of 2(S)-amino-3-methyl-1-oxobutanehydrazine and 4-nitrobenzaldehyde in ethanol. The product was derived from an initial reaction of 2(S)-amino-3-methyl-1-oxobutanehydrazine at its hydrazine group to provide a 4-nitrobenzylidene derivative, followed by a cyclization reaction with another molecule of 4-nitrobenzaldehyde to form the chiral five-membered imidazolidin-4-one ring. The formation of the five-membered imidazolidin-4-one ring occurred with retention of the configuration at the 5-position, but with racemization at the 2-position. In the crystal, N—H⋯O(nitro) hydrogen bonds, weak C—H⋯O(carbonyl) and C—H⋯O(nitro) hydrogen bonds, as well as C—H⋯π, N—H⋯π and π–π interactions, are present. These combine to generate a three-dimensional array. Hirshfeld surface analysis and PIXEL calculations are also reported. Full Article text
ni Crystal structure and Hirshfeld surface analysis of 2-(4-nitrophenyl)-2-oxoethyl benzoate By scripts.iucr.org Published On :: 2019-10-22 The title compound, C15H11NO5, is relatively planar, with the planes of the two aromatic rings being inclined to each other by 3.09 (5)°. In the crystal, molecules are linked by a pair of C—H⋯O hydrogen bonds, forming inversion dimers, which enclose an R22(16) ring motif. The dimers are linked by a further pair of C—H⋯O hydrogen-bonds forming ribbons enclosing R44(26) ring motifs. The ribbons are linked by offset π–π interactions [centroid–centroid distances = 3.6754 (6)–3.7519 (6) Å] to form layers parallel to the ac plane. Through Hirshfeld surface analyses, the dnorm surfaces, electrostatic potential and two-dimensional fingerprint (FP) plots were examined to verify the contributions of the different intermolecular contacts within the supramolecular structure. The shape-index surface shows that two sides of the molecule are involved with the same contacts in neighbouring molecules, and the curvedness plot shows flat surface patches that are characteristic of planar stacking. Full Article text
ni Crystal structures of two dimeric nickel diphenylacetate complexes By scripts.iucr.org Published On :: 2019-10-29 In the crystal structures of the title compounds, namely μ-aqua-κ2O:O-di-μ-diphenylacetato-κ4O:O'-bis[(diphenylacetato-κO)bis(pyridine-κN)nickel(II)], [Ni2(C14H11O2)4(C5H5N)4(H2O)] (1) and μ-aqua-κ2O:O-di-μ-diphenylacetato-κ4O:O'-bis[(2,2'-bipyridine-κ2N,N')(diphenylacetato-κO)nickel(II)]–acetonitrile–diphenylacetic acid (1/2.5/1), [Ni2(C14H11O2)4(C10H8N2)2(H2O)]·2.5CH3CN·C14H12O2 (2), the complex units are stabilized by a variety of intra- and intermolecular hydrogen bonds, as well as C—H⋯π and π–π contacts between the aromatic systems of the pyridine, dipyridyl and diphenylacetate ligands. Despite the fact that the diphenylacetate ligand is sterically bulky, this does not interfere with the formation of the described aqua-bridged dimeric core, even with a 2,2'-bipyridine ligand, which has a strong chelating effect. Full Article text
ni Crystal structures of 2-(2-bromo-5-fluorophenyl)-8-ethoxy-3-nitro-2H-thiochromene and 2-(2-bromo-5-fluorophenyl)-7-methoxy-3-nitro-2H-thiochromene By scripts.iucr.org Published On :: 2019-10-31 Two thiochromene compounds containing Br and F atoms, namely 2-(2-bromo-5-fluorophenyl)-8-ethoxy-3-nitro-2H-thiochromene (C17H13BrFNO3S, A) and 2-(2-bromo-5-fluorophenyl)-7-methoxy-3-nitro-2H-thiochromene (C16H11BrFNO3S, B), were prepared via the condensation reaction between 2-mercaptobenzaldehyde and nitrostyrene derivatives. In both compounds, the thiochromene plane is almost perpendicular to the phenyl ring. In the structure of A, molecules are assembled via π–π stacking and C—H⋯O and C—F⋯π interactions. In the crystal packing of B, molecules are linked by C—H⋯F, C—H⋯O, C—H⋯π and π–π interactions. Full Article text
ni Crystal structure and Hirshfeld surface analysis of 2-(4-nitrophenyl)-2-oxoethyl picolinate By scripts.iucr.org Published On :: 2019-10-29 2-(4-Nitrophenyl)-2-oxoethyl picolinate, C14H10N2O5, was synthesized under mild conditions. The chemical and molecular structures were confirmed by single-crystal X-ray diffraction analysis. The molecules are linked by inversion into centrosymmetric dimers via weak intermolecular C—H⋯O interactions, forming R22(10) ring motifs, and further strengthened by weak π–π interactions. Hirshfeld surface analyses, the dnorm surfaces, electrostatic potential and two-dimensional fingerprint (FP) plots were used to verify the contributions of the different intermolecular interactions within the supramolecular structure. The shape-index surface shows that two sides of the molecules are involved with the same contacts in neighbouring molecules and curvedness plots show flat surface patches that are characteristic of planar stacking. Full Article text
ni Synthesis and crystal structure of (E)-2-({2-[azaniumylidene(methylsulfanyl)methyl]hydrazinylidene}methyl)benzene-1,4-diol hydrogen sulfate By scripts.iucr.org Published On :: 2019-10-29 The title molecular salt, C9H12N3O2S+·HSO4−, was obtained through the protonation of the azomethine N atom in a sulfuric acid medium. The crystal comprises two entities, a thiosemicarbazide cation and a hydrogen sulfate anion. The cation is essentially planar and is further stabilized by a strong intramolecular O—H⋯N hydrogen bond. In the crystal, a three-dimensional network is established through O—H⋯O and N—H⋯O hydrogen bonds. A weak intermolecular C—H⋯O hydrogen bond is also observed. The hydrogen sulfate anion exhibits disorder over two sets of sites and was modelled with refined occupancies of 0.501 (6) and 0.499 (6). Full Article text
ni Crystal structure and Hirshfeld surface analysis of 2-(4-nitrophenyl)-2-oxoethyl 2-chlorobenzoate By scripts.iucr.org Published On :: 2019-10-31 The title compound, C15H10ClNO5, is relatively planar with the two aromatic rings being inclined to each other by 3.56 (11)°. The central —C(=O)—C–O—C(=O)— bridge is slightly twisted, with a C—C—O—C torsion angle of 164.95 (16)°. In the crystal, molecules are linked by C—H⋯O and C—H⋯Cl hydrogen bonds, forming layers parallel to the (101) plane. The layers are linked by a further C—H⋯O hydrogen bond, forming a three-dimensional supramolecular structure. There are a number of offset π–π interactions present between the layers [intercentroid distances vary from 3.8264 (15) to 3.9775 (14) Å]. Hirshfeld surface analyses, the dnorm surfaces, electrostatic potential and two-dimensional fingerprint plots were examined to verify the contributions of the different intermolecular contacts within the supramolecular structure. The shape-index surface shows that two sides of the molecule are involved in the same contacts with neighbouring molecules, and the curvedness plot shows flat surface patches that are characteristic of planar stacking. Full Article text
ni Crystal structure of pyridinium tetraisothiocyanatodipyridinechromium(III) pyridine monosolvate By scripts.iucr.org Published On :: 2019-11-15 In the crystal structure of the title compound, (C5H6N)[Cr(NCS)4(C5H5N)2]·C5H5N, the CrIII ions are octahedrally coordinated by four N-bonding thiocyanate anions and two pyridine ligands into discrete negatively charged complexes, with the CrIII ion, as well as the two pyridine ligands, located on crystallographic mirror planes. The mean planes of the two pyridine ligands are rotated with respect to each other by 90°. Charge balance is achieved by one protonated pyridine molecule that is hydrogen bonded to one additional pyridine solvent molecule, with both located on crystallographic mirror planes and again rotated by exactly 90°. The pyridinium H atom was refined as disordered between both pyridine N atoms in a 70:30 ratio, leading to a linear N—H⋯N hydrogen bond. In the crystal, discrete complexes are linked by weak C—H⋯S hydrogen bonds into chains that are connected by additional C—H⋯S hydrogen bonding via the pyridinium cations and solvent molecules into layers and finally into a three-dimensional network. Full Article text
ni Crystal structure of catena-poly[[[(2-ethoxypyrazine-κN)copper(I)]-di-μ2-cyanido] [copper(I)-μ2-cyanido]] By scripts.iucr.org Published On :: 2019-10-31 In the asymmetric unit of the title coordination compound, {[Cu(CN)(C4H3OC2H5N2)][Cu(CN)]}n, there are two Cu atoms with different coordination environments. One CuI ion is coordinated in a triangular coordination geometry by the N atom of the 2-ethoxypyrazine molecule and by two bridging cyanide ligands, equally disordered over two sites exchanging C and N atoms, thus forming polymeric chains parallel to the c axis. The other Cu atom is connected to two bridging cyanide groups disordered over two sites with an occupancy of 0.5 for each C and N atom, and forming an almost linear polymeric chain parallel to the b axis. In the crystal, the two types of chain, which are orthogonal to each other, are connected by cuprophilic Cu⋯Cu interactions [2.7958 (13) Å], forming two-dimensional metal–organic coordination layers parallel to the bc plane. The coordination framework is further stabilized by weak long-range (electrostatic type) C—H⋯π interactions between cyano groups and 2-ethoxypyrazine rings. Full Article text