ni Crystal structure and Hirshfeld surface analysis of poly[tris(μ4-benzene-1,4-dicarboxylato)tetrakis(dimethylformamide)trinickel(II)]: a two-dimensional coordination network By scripts.iucr.org Published On :: 2019-11-08 The crystal structure of the title compound, [Ni3(C8H4O4)3(C3H7NO)4], is a two-dimensional coordination network formed by trinuclear linear Ni3(tp)3(DMF)4 units (tp = terephthalate = benzene-1,4-dicarboxylate and DMF = dimethylformamide) displaying a characteristic coordination mode of acetate groups in polynuclear metal–organic compounds. Individual trinuclear units are connected through tp anions in a triangular network that forms layers. One of the DMF ligands points outwards and provides interactions with equivalent planes above and below, leaving the second ligand in a structural void much larger than the DMF molecule, which shows positional disorder. Parallel planes are connected mainly through weak C—H⋯O, H⋯H and H⋯C interactions between DMF molecules, as shown by Hirshfeld surface analysis. Full Article text
ni Organically pillared layer framework of [Eu(NH2–BDC)(ox)(H3O)] By scripts.iucr.org Published On :: 2019-11-08 The non-porous three-dimensional structure of poly[(μ5-2-aminobenzene-1,4-dicarboxylato)(μ6-oxalato)(oxomium)europium(III)], [Eu(C8H5NO4)(C2O4)(H3O)]n or [EuIII(NH2–BDC)(ox)(H3O)]n (NH2–BDC2− = 2-aminoterephthalate and ox2− = oxalate) is constructed from two-dimensional layers of EuIII–carboxylate–oxalate, which are connected by NH2–BDC2− pillars. The basic structural unit of the layer is an edge-sharing dimer of TPRS-{EuIIIO9}, which is assembled through the ox2− moiety. The intralayer void is partially occupied by TPR-{EuIIIO6} motifs. Weak C—H⋯O and strong, classical intramolecular N—H⋯O and intermolecular O—H⋯O hydrogen-bonding interactions, as well as weak π–π stacking interactions, affix the organic pillars within the framework. The two-dimensional layer can be simplified to a uninodal 4-connected sql/Shubnikov tetragonal plane net with point symbol {44.62}. Full Article text
ni (μ-Di-tert-butylsilanediolato)bis[bis(η5-cyclopentadienyl)methylzirconium] By scripts.iucr.org Published On :: 2019-11-08 The reaction of t-Bu2Si(OH)2 with two equivalents of Cp2Zr(CH3)2 produces the title t-Bu2SiO2-siloxide bridged dimer, [Zr2(CH3)2(C5H5)4(C8H18O2Si)] or [Cp2Zr(CH3)]2[μ-t-Bu2SiO2] (1), where one methyl group is retained per zirconium atom. The same product is obtained at room temperature even when equimolar ratios of the silanediol and Cp2Zr(CH3)2 are used. Attempts to thermally eliminate methane and produce a bridging methylene complex resulted in decomposition. The crystal structure of 1 displays typical Zr—CH3 and Zr—O distances but the Si—O distance [1.628 (2) Å] and O—Si—O angle [110.86 (15)°] are among the largest observed in this family of compounds suggesting steric crowding between the t-Bu substituents of the silicon atom and the cyclopentadienyl groups. The silicon atom lies on a crystallographic twofold axis and both Cp rings are disordered over two orientations of equal occupancy. Full Article text
ni Synthesis, crystal structure and characterizations of di-μ-cyanido-1:2κ2N:C;2:3κ2C:N-bis(4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane)-1κ8N1,N10,O4,O7,O13,O16,O21,O24;3κ8N1,N10,O4,O7,O13,O16,O21,O24-[5,10, By scripts.iucr.org Published On :: 2019-11-26 The title compound, [Fe(C44H24N8Cl4)(CN)2][K2(C18H36N2O6)2]·2C4H8O was synthesized and characterized by single-crystal X-ray diffraction as well as FTIR and UV–vis spectroscopy. The central FeII ion is coordinated by four pyrrole N atoms of the porphyrin core and two C atoms of the cyano groups in a slightly distorted octahedral coordination environment. The complex molecule crystallizes with two tetrahydrofuran solvent molecules, one of which was refined as disordered over two sets of sites with refined occupancies of 0.619 (5) and 0.381 (5). It has a distorted porphyrin core with mean absolute core-atom displacements Ca, Cb, Cm and Cav of 0.32 (3), 0.22 (3), 0.56 (2) and 0.37 (14) Å, respectively. The axial Fe—Ccyano bond lengths are 1.991 (2) and 1.988 (2) Å. The average Fe—Np (Np is a porphyrin N atom) bond length is 1.964 (10) Å. One of the O atoms and several C atoms of the 222 moiety [222 = 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane] were refined as disordered over two sets of sites with occupancy ratios of 0.739 (6):0.261 (6) and 0.832 (4):0.168 (4). Additional solvent molecules were found to be highly disordered and their contribution to the scattering was removed using the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9–18], which indicated a solvent cavity of volume 372 Å3 containing approximately 83 electrons. These solvent molecules are not considered in the given chemical formula and other crystal data. Full Article text
ni Crystal structure and Hirshfeld surface analysis of a zinc xanthate complex containing the 2,2'-bipyridine ligand By scripts.iucr.org Published On :: 2019-11-12 In the title compound, (2,2'-bipyridine-κ2N,N')bis(2-methoxyethyl xanthato-κS)zinc(II), [Zn(C4H7O2S2)2(C10H8N2)], the ZnII ion is coordinated to two N atoms of the 2,2'-bipyridine ligand and two S atoms from two 2-methoxyethyl xanthate ligands. The ZnII ion lies on a crystallographic twofold rotation axis and has distorted tetrahedral coordination geometry. In the crystal, molecules are linked by weak C—H⋯O hydrogen bonds, forming supramolecular chains propagating along the a-axis direction. Weak intramolecular C—H⋯S hydrogen bonds are also observed. The intermolecular contacts in the crystal were further analysed using Hirshfield surface analysis, which indicates that the most significant contacts are H⋯H (36.3%), followed by S⋯H/H⋯S (24.7%), C⋯H/H⋯C (15.1%), O⋯H/H⋯O (14.4%), N⋯H/H⋯N (4.1%) and C⋯C (2.9%). Full Article text
ni Crystal structure of 4-chloro-2-nitrobenzoic acid with 4-hydroxyquinoline: a disordered structure over two states of 4-chloro-2-nitrobenzoic acid–quinolin-4(1H)-one (1/1) and 4-hydroxyquinolinium 4-chloro-2-nitrob By scripts.iucr.org Published On :: 2019-11-08 The title compound, C9H7.5NO·C7H3.5ClNO4, was analysed as a disordered structure over two states, viz. co-crystal and salt, accompanied by a keto–enol tautomerization in the base molecule. The co-crystal is 4-chloro-2-nitrobenzoic acid–quinolin-4(1H)-one (1/1), C7H4ClNO4·C9H7NO, and the salt is 4-hydroxyquinolinium 4-chloro-2-nitrobenzoate, C9H8NO+·C7H3ClNO4−. In the compound, the acid and base molecules are held together by a short hydrogen bond [O⋯O = 2.4393 (15) Å], in which the H atom is disordered over two positions with equal occupancies. In the crystal, the hydrogen-bonded acid–base units are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming a tape structure along the a-axis direction. The tapes are stacked into a layer parallel to the ab plane via π–π interactions [centroid–centroid distances = 3.5504 (8)–3.9010 (11) Å]. The layers are further linked by another C—H⋯O hydrogen bond, forming a three-dimensional network. Hirshfeld surfaces for the title compound mapped over shape-index and dnorm were generated to visualize the intermolecular interactions. Full Article text
ni Structure refinement of (NH4)3Al2(PO4)3 prepared by ionothermal synthesis in phosphonium based ionic liquids – a redetermination By scripts.iucr.org Published On :: 2019-11-19 After crystallization during ionothermal syntheses in phosphonium-containing ionic liquids, the structure of (NH4)3Al2(PO4)3 [triammonium dialuminum tris(phosphate)] was refined on the basis of powder X-ray diffraction data from a synchrotron source. (NH4)3Al2(PO4)3 is a member of the structural family with formula A3Al2(PO4)3, where A is a group 1 element, and of which the NH4, K, and Rb forms were previously known. The NH4 form is isostructural with the K form, and was previously solved from single-crystal X-ray data when the material (SIZ-2) crystallized from a choline-containing eutectic mixture [Cooper et al. (2004). Nature, 430, 1012–1017]. Our independent refinement incorporates NH4 groups and shows that these NH4 groups are hydrogen bonded to framework O atoms present in rings containing 12 T sites in a channel along the c-axis direction. We describe structural details of (NH4)3Al2(PO4)3 and discuss differences with respect to isostructural forms. Full Article text
ni The crystal structure of the triclinic polymorph of 1,4-bis([2,2':6',2''-terpyridin]-4'-yl)benzene By scripts.iucr.org Published On :: 2019-11-29 The title triclinic polymorph (Form I) of 1,4-bis([2,2':6',2''-terpyridin]-4'-yl)benzene, C36H24N6, was formed in the presence of the Lewis acid yttrium trichloride in an attempt to obtain a coordination compound. The crystal structure of the orthorhombic polymorph (Form II), has been described previously [Fernandes et al. (2010). Acta Cryst. E66, o3241–o3242]. The asymmetric unit of Form I consists of half a molecule, the whole molecule being generated by inversion symmetry with the central benzene ring being located about a crystallographic centre of symmetry. The side pyridine rings of the 2,2':6',2''-terpyridine (terpy) unit are rotated slightly with respect to the central pyridine ring, with dihedral angles of 8.91 (8) and 10.41 (8)°. Opposite central pyridine rings are coplanar by symmetry, and the angle between them and the central benzene ring is 49.98 (8)°. The N atoms of the pyridine rings inside the terpy entities, N⋯N⋯N, lie in trans–trans positions. In the crystal, molecules are linked by C—H⋯π and offset π–π interactions [intercentroid distances are 3.6421 (16) and 3.7813 (16) Å], forming a three-dimensional structure. Full Article text
ni Crystal structure of the coordination polymer catena-poly[[[(acetonitrile-κN)copper(I)]-μ3-1,3-dithiolane-κ3S:S:S'] hexafluoridophosphate] By scripts.iucr.org Published On :: 2020-01-01 The polymeric title compound, [Cu2(C2H3N)2(C3H6S2)2](PF6)2, represents an example of a one-dimensional coordination polymer resulting from the reaction of [Cu(MeCN)4][PF6] with 1,3-dithiolane. The cationic one-dimensional ribbon consists of two copper(I) centers each ligated by one acetonitrile molecule and interconnected through two bridging 1,3-dithiolane ligands. One S-donor site of each ligand is κ1-bound to Cu, whereas the second S atom acts as a four-electron donor, bridging two Cu atoms in a κ4-bonding mode. The positive charge of each copper cation is compensated for by a hexafluoridophosphate counter-ion. In the crystal, the polymer chains are linked by a series of C—H⋯F hydrogen bonds, forming a supramolecular framework. The crystal studied was refined as a two-component twin. Full Article text
ni Crystal structures of chlorido[dihydroxybis(1-iminoethoxy)]arsanido-κ3N,As,N']platinum(II) and of a polymorph of chlorido[dihydroxybis(1-iminopropoxy)arsanido-κ3N,As,N']platinum(II) By scripts.iucr.org Published On :: 2020-01-10 Each central platinum(II) atom in the crystal structures of chlorido[dihydroxybis(1-iminoethoxy)arsanido-κ3N,As,N']platinum(II), [Pt(C4H10AsN2O4)Cl] (1), and of chlorido[dihydroxybis(1-iminopropoxy)arsanido-κ3N,As,N']platinum(II), [Pt(C6H14AsN2O4)Cl] (2), is coordinated by two nitrogen donor atoms, a chlorido ligand and to arsenic, which, in turn, is coordinated by two oxygen donor ligands, two hydroxyl ligands and the platinum(II) atom. The square-planar and trigonal–bipyramidal coordination environments around platinum and arsenic, respectively, are significantly distorted with the largest outliers being 173.90 (13) and 106.98 (14)° for platinum and arsenic in (1), and 173.20 (14)° and 94.20 (9)° for (2), respectively. One intramolecular and four classical intermolecular hydrogen-bonding interactions are observed in the crystal structure of (1), which give rise to an infinite three-dimensional network. A similar situation (one intramolecular and four classical intermolecular hydrogen-bonding interactions) is observed in the crystal structure of (2). Various π-interactions are present in (1) between the platinum(II) atom and the centroid of one of the five-membered rings formed by Pt, As, C, N, O with a distance of 3.7225 (7) Å, and between the centroids of five-membered (Pt, As, C, N, O) rings of neighbouring molecules with distances of 3.7456 (4) and 3.7960 (6) Å. Likewise, weak π-interactions are observed in (2) between the platinum(II) atom and the centroid of one of the five-membered rings formed by Pt, As, C, N, O with a distance of 3.8213 (2) Å, as well as between the Cl atom and the centroid of a symmetry-related five-membered ring with a distance of 3.8252 (12) Å. Differences between (2) and the reported polymorph [Miodragović et al. (2013). Angew. Chem. Int. Ed. 52, 10749–10752] are discussed. Full Article text
ni Bis{4-[(2-hydroxy-5-methoxy-3-nitrobenzylidene)amino]phenyl} ether By scripts.iucr.org Published On :: 2020-01-01 The molecule of the title compound, C28H22N4O9, exhibits crystallographically imposed twofold rotational symmetry, with a dihedral angle of 66.0 (2)° between the planes of the two central benzene rings bounded to the central oxygen atom. The dihedral angle between the planes of the central benzene ring and the terminal phenol ring is 4.9 (2)°. Each half of the molecule exhibits an imine E configuration. An intramolecular O—H⋯N hydrogen bond is present. In the crystal, the molecules are linked into layers parallel to the ab plane via C—H⋯O hydrogen bonds. The crystal studied was refined as a two-component pseudomerohedral twin. Full Article text
ni Crystal structure, spectroscopic characterization and Hirshfeld surface analysis of aquadichlorido{N-[(pyridin-2-yl)methylidene]aniline}copper(II) monohydrate By scripts.iucr.org Published On :: 2020-01-07 The reaction of N-phenyl-1-(pyridin-2-yl)methanimine with copper chloride dihydrate produced the title neutral complex, [CuCl2(C12H10N2)(H2O)]·H2O. The CuII ion is five-coordinated in a distorted square-pyramidal geometry, in which the two N atoms of the bidentate Schiff base, as well as one chloro and a water molecule, form the irregular base of the pyramidal structure. Meanwhile, the apical chloride ligand interacts through a strong hydrogen bond with a water molecule of crystallization. In the crystal, molecules are arranged in pairs, forming a stacking of symmetrical cyclic dimers that interact in turn through strong hydrogen bonds between the chloride ligands and both the coordinated and the crystallization water molecules. The molecular and electronic structures of the complex were also studied in detail using EPR (continuous and pulsed), FT–IR and Raman spectroscopy, as well as magnetization measurements. Likewise, Hirshfeld surface analysis was used to investigate the intermolecular interactions in the crystal packing. Full Article text
ni 3,3-Bis(2-hydroxyethyl)-1-(4-nitrobenzoyl)thiourea: crystal structure, Hirshfeld surface analysis and computational study By scripts.iucr.org Published On :: 2020-01-07 In the title compound, C12H15N3O5S, a trisubstituted thiourea derivative, the central CN2S chromophore is almost planar (r.m.s. deviation = 0.018 Å) and the pendant hydroxyethyl groups lie to either side of this plane. While to a first approximation the thione-S and carbonyl-O atoms lie to the same side of the molecule, the S—C—N—C torsion angle of −47.8 (2)° indicates a considerable twist. As one of the hydroxyethyl groups is orientated towards the thioamide residue, an intramolecular N—H⋯O hydrogen bond is formed which leads to an S(7) loop. A further twist in the molecule is indicated by the dihedral angle of 65.87 (7)° between the planes through the CN2S chromophore and the 4-nitrobenzene ring. There is a close match between the experimental and gas-phase, geometry-optimized (DFT) molecular structures. In the crystal, O—H⋯O and O—H⋯S hydrogen bonds give rise to supramolecular layers propagating in the ab plane. The connections between layers to consolidate the three-dimensional architecture are of the type C—H⋯O, C—H⋯S and nitro-O⋯π. The nature of the supramolecular association has been further analysed by a study of the calculated Hirshfeld surfaces, non-covalent interaction plots and computational chemistry, all of which point to the significant influence and energy of stabilization provided by the conventional hydrogen bonds. Full Article text
ni Synthesis, crystal structure and spectroscopic and Hirshfeld surface analysis of 4-hydroxy-3-methoxy-5-nitrobenzaldehyde By scripts.iucr.org Published On :: 2020-01-21 The title compound, C8H7NO5, is planar with an r.m.s. deviation for all non-hydrogen atoms of 0.018 Å. An intramolecular O—H⋯O hydrogen bond involving the adjacent hydroxy and nitro groups forms an S(6) ring motif. In the crystal, molecules are linked by O—H⋯O hydrogen bonds, forming chains propagating along the b-axis direction. The chains are linked by C—H⋯O hydrogen bonds, forming layers parallel to the bc plane. The layers are linked by a further C—H⋯O hydrogen bond, forming slabs, which are linked by C=O⋯π interactions, forming a three-dimensional supramolecular structure. Hirshfeld surface analysis was used to investigate intermolecular interactions in the solid state. The molecule was also characterized spectroscopically and its thermal stability investigated by differential scanning calorimetry and by thermogravimetric analysis. Full Article text
ni The synthesis, crystal structure and Hirshfeld analysis of 4-(3,4-dimethylanilino)-N-(3,4-dimethylphenyl)quinoline-3-carboxamide By scripts.iucr.org Published On :: 2020-01-17 The structure of the title quinoline carboxamide derivative, C26H25N3O, is described. The quinoline moiety is not planar as a result of a slight puckering of the pyridine ring. The secondary amine has a slightly pyramidal geometry, certainly not planar. Both intra- and intermolecular hydrogen bonds are present. Hirshfeld surface analysis and lattice energies were used to investigate the intermolecular interactions. Full Article text
ni The first coordination compound of deprotonated 2-bromonicotinic acid: crystal structure of a dinuclear paddle-wheel copper(II) complex By scripts.iucr.org Published On :: 2020-01-17 A copper(II) dimer with the deprotonated anion of 2-bromonicotinic acid (2-BrnicH), namely, tetrakis(μ-2-bromonicotinato-κ2O:O')bis[aquacopper(II)](Cu—Cu), [Cu2(H2O)2(C6H3BrNO2)4] or [Cu2(H2O)2(2-Brnic)4], (1), was prepared by the reaction of copper(II) chloride dihydrate and 2-bromonicotinic acid in water. The copper(II) ion in 1 has a distorted square-pyramidal coordination environment, achieved by four carboxylate O atoms in the basal plane and the water molecule in the apical position. The pair of symmetry-related copper(II) ions are connected into a centrosymmetric paddle-wheel dinuclear cluster [Cu⋯Cu = 2.6470 (11) Å] via four O,O'-bridging 2-bromonicotinate ligands in the syn-syn coordination mode. In the extended structure of 1, the cluster molecules are assembled into an infinite two-dimensional hydrogen-bonded network lying parallel to the (001) plane via strong O—H⋯O and O—H⋯N hydrogen bonds, leading to the formation of various hydrogen-bond ring motifs: dimeric R22(8) and R22(16) loops and a tetrameric R44(16) loop. The Hirshfeld surface analysis was also performed in order to better illustrate the nature and abundance of the intermolecular contacts in the structure of 1. Full Article text
ni Structural characterization and Hirshfeld surface analysis of 2-iodo-4-(pentafluoro-λ6-sulfanyl)benzonitrile By scripts.iucr.org Published On :: 2020-01-17 The title compound, C7H3F5INS, a pentafluorosulfanyl (SF5) containing arene, was synthesized from 4-(pentafluorosulfanyl)benzonitrile and lithium tetramethylpiperidide following a variation to the standard approach, which features simple and mild conditions that allow direct access to tri-substituted SF5 intermediates that have not been demonstrated using previous methods. The molecule displays a planar geometry with the benzene ring in the same plane as its three substituents. It lies on a mirror plane perpendicular to [010] with the iodo, cyano, and the sulfur and axial fluorine atoms of the pentafluorosulfanyl substituent in the plane of the molecule. The equatorial F atoms have symmetry-related counterparts generated by the mirror plane. The pentafluorosulfanyl group exhibits a staggered fashion relative to the ring and the two hydrogen atoms ortho to the substituent. S—F bond lengths of the pentafluorosulfanyl group are unequal: the equatorial bond facing the iodo moiety has a longer distance [1.572 (3) Å] and wider angle compared to that facing the side of the molecules with two hydrogen atoms [1.561 (4) Å]. As expected, the axial S—F bond is the longest [1.582 (5) Å]. In the crystal, in-plane C—H⋯F and N⋯I interactions as well as out-of-plane F⋯C interactions are observed. According to the Hirshfeld analysis, the principal intermolecular contacts for the title compound are F⋯H (29.4%), F⋯I (15.8%), F⋯N (11.4%), F⋯F (6.0%), N⋯I (5.6%) and F⋯C (4.5%). Full Article text
ni [Se(CH2C(O)CH3)3][B12F11NH3]: The first selenium cation with three β-ketone substituents By scripts.iucr.org Published On :: 2020-01-17 The reaction of [Se8][B12F11NH3]2 with acetone and subsequent crystallization from acetone/diethyl ether yielded the selenium cation [Se(CH2C(O)CH3)3]+ as a by-product, which is stabilized by the weakly coordinating undecafluorinated anion [B12F11NH3]−. While attempting to crystallize pure [Se8][B12F11NH3]2, the structure of the isolated product, namely, tris(2-oxopropyl)selenium 1-ammonioundecafluorododecaborate, was surprising. The cation [Se(CH2C(O)CH3)3]+ represents the first example for a cationic selenium compound with three ketone functional groups located in the β-position with respect to the selenium atom. The cation possesses almost trigonal–pyramidal C3 symmetry and forms hydrogen bonds to the ammonio group of the anion. Full Article text
ni An indenide-tethered N-heterocyclic stannylene By scripts.iucr.org Published On :: 2020-01-21 The structure of (μ-1κN:2(η2),κ2N,N'-(2-{[2,6-bis(propan-2-yl)phenyl]azanidyl}ethyl)[2-(1H-inden-1-yl)ethyl]azanido)(1,4,7,10,13,16-hexaoxacyclooctadecane-1κ6O)lithiumtin, [LiSn(C8H16O4)(C25H31N2)], at 100 K has monoclinic (P21/n) symmetry. Analysis of the coordination of the Sn to the indenyl ring shows that the Sn interacts in an η2 fashion. A database survey showed that whilst this coordination mode is unusual for Ge and Pb compounds, Sn displays a wider range of coordination modes to cyclopentadienyl ligands and their derivatives. Full Article text
ni Tetraaqua[3-oxo-1,3-bis(pyridinium-2-yl)propan-1-olato]nickel(II) tribromide dihydrate By scripts.iucr.org Published On :: 2020-01-31 The crystal structure of the title compound, [Ni(C13H11N2O2)(H2O)4]Br3·2H2O, contains an octahedral NiII atom coordinated to the enol form of 1,3-dipyridylpropane-1,3-dione (dppo) and four water molecules. Both pyridyl rings on the ligand are protonated, forming pyridinium rings and creating an overall ligand charge of +1. The protonated nitrogen-containing rings are involved in hydrogen-bonding interactions with neighoring bromide anions. There are many additional hydrogen-bonding interactions involving coordinated water molecules on the NiII atom, bromide anions and hydration water molecules. Full Article text
ni Crystal structures and Hirshfeld surface analysis of trans-bis(thiocyanato-κN)bis{2,4,6-trimethyl-N-[(pyridin-2-yl)methylidene]aniline-κ2N,N'}manganese(II) and trans-bis(thiocyanato-κN)bis{2,4,6-trimethyl-N-[(pyri By scripts.iucr.org Published On :: 2020-01-31 Two new mononuclear metal complexes involving the bidentate Schiff base ligand 2,4,6-trimethyl-N-[(pyridin-2-yl)methylidene]aniline (C15H16N2 or PM-TMA), [Mn(NCS)2(PM-TMA)2] (I) and [Ni(NCS)2(PM-TMA)2] (II), were synthesized and their structures determined by single-crystal X-ray diffraction. Although the title compounds crystallize in different crystal systems [triclinic for (I) and monoclinic for (II)], both asymmetric units consist of one-half of the complex molecule, i.e. one metal(II) cation, one PM-TMA ligand, and one N-bound thiocyanate anion. In both complexes, the metal(II) cation is located on a centre of inversion and adopts a distorted octahedral coordination environment defined by four N atoms from two symmetry-related PM-TMA ligands in the equatorial plane and two N atoms from two symmetry-related NCS− anions in a trans axial arrangement. The trimethylbenzene and pyridine rings of the PM-TMA ligand are oriented at dihedral angles of 74.18 (7) and 77.70 (12)° for (I) and (II), respectively. The subtle change in size of the central metal cations leads to a different crystal packing arrangement for (I) and (II) that is dominated by weak C—H⋯S, C—H⋯π, and π–π interactions. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to quantify these intermolecular contacts, and indicate that the most significant contacts in packing are H⋯H [48.1% for (I) and 54.9% for (II)], followed by H⋯C/C⋯H [24.1% for (I) and 15.7% for (II)], and H⋯S/S⋯H [21.1% for (I) and 21.1% for (II)]. Full Article text
ni Poly[[tetradecakis(μ-propionato)heptabarium] propionic acid monosolvate tetrahydrate] By scripts.iucr.org Published On :: 2020-01-31 The title compound, {[Ba7(C3H5O2)14]·0.946C3H6O2·4H2O}n, is represented by a metal–organic framework structure that is held together by Ba—O—Ba bonds, as well as by O—H⋯O hydrogen bonds of moderate strength. The structure comprises of four independent Ba2+ cations (one of which is situated on a twofold rotation axis), seven independent propionate and two independent water molecules. The bond-valence sums of all the cations indicate a slight overbonding. There is also an occupationally, as well as a positionally disordered propionic acid molecule present in the structure. Its occupation is slightly lower than the full occupation while the disordered molecules occupy two positions related by a rotation about a twofold rotation axis. In addition, the methyl group in the symmetry-independent propionic acid molecule is also disordered, and occupies two positions. Each propionic acid molecule coordinates to just one cation from a pair of symmetry-equivalent Ba2+ sites and is simultaneously bonded by an O—H⋯Opropionate hydrogen bond. This means that on a microscopic scale, the coordination number of the corresponding Ba2+ site is either 9 or 10. The methyl as well as hydroxy hydrogen atoms of the disordered propionic acid molecule were not determined. Full Article text
ni Crystal structure of a nickel compound comprising two nickel(II) complexes with different ligand environments: [Ni(tren)(H2O)2][Ni(H2O)6](SO4)2 By scripts.iucr.org Published On :: 2020-02-06 The title compound, diaqua[tris(2-aminoethyl)amine]nickel(II) hexaaquanickel(II) bis(sulfate), [Ni(C6H18N4)(H2O)2][Ni(H2O)6](SO4)2 or [Ni(tren)(H2O)2][Ni(H2O)6](SO4)2, consists of two octahedral nickel complexes within the same unit cell. These metal complexes are formed from the reaction of [Ni(H2O)6](SO4) and the ligand tris(2-aminoethyl)amine (tren). The crystals of the title compound are purple, different from those of the starting complex [Ni(H2O)6](SO4), which are turquoise. The reaction was performed both in a 1:1 and 1:2 metal–ligand molar ratio, always yielding the co-precipitation of the two types of crystals. The asymmetric unit of the title compound, which crystallizes in the space group Pnma, consists of two half NiII complexes and a sulfate counter-anion. The mononuclear cationic complex [Ni(tren)(H2O)2]2+ comprises an Ni ion, the tren ligand and two water molecules, while the mononuclear complex [Ni(H2O)6]2+ consists of another Ni ion surrounded by six coordinated water molecules. The [Ni(tren)(H2O)2] and [Ni(H2O)6] subunits are connected to the SO42− counter-anions through hydrogen bonding, thus consolidating the crystal structure. Full Article text
ni Crystal structure of 1,4,8,11-tetramethyl-1,4,8,11-tetraazoniacyclotetradecane bis(perchlorate) dichloride from synchrotron X-ray data By scripts.iucr.org Published On :: 2020-02-11 The crystal structure of title salt, C14H36N44+·2ClO4−·2Cl−, has been determined using synchrotron radiation at 220 K. The structure determination reveals that protonation has occurred at all four amine N atoms. The asymmetric unit contains one half-cation (completed by crystallographic inversion symmetry), one perchlorate anion and one chloride anion. A distortion of the perchlorate anion is due to its involvement in hydrogen-bonding interactions with the cations. The crystal structure is consolidated by intermolecular hydrogen bonds involving the 1,4,8,11-tetramethyl-1,4,8,11-tetraazoniacyclotetradecane N—H and C—H groups as donor groups, and the O atoms of the perchlorate and chloride anion as acceptor groups, giving rise to a three-dimensional network. Full Article text
ni Crystal structure of imidazo[1,5-a]pyridinium-based hybrid salt (C13H12N3)2[MnCl4] By scripts.iucr.org Published On :: 2020-02-06 A new organic–inorganic hybrid salt [L]2[MnCl4] (I) where L+ is the 2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridinium cation, is built of discrete organic cations and tetrachloridomanganate(II) anions. The L+ cation was formed in situ in the oxidative cyclocondensation of 2-pyridinecarbaldehyde and CH3NH2·HCl in methanol. The structure was refined as a two-component twin using PLATON (Spek, 2020) to de-twin the data. The twin law (−1 0 0 0 − 1 0 0.5 0 1) was applied in the refinement where the twin component fraction refined to 0.155 (1). The compound crystallizes in the space group P21/c with two crystallographically non-equivalent cations in the asymmetric unit, which possess similar structural conformations. The fused pyridinium and imidazolium rings of the cations are virtually coplanar [dihedral angles are 0.89 (18) and 0.78 (17)°]; the pendant pyridyl rings are twisted by 36.83 (14) and 36.14 (13)° with respect to the planes of the remaining atoms of the cations. The tetrahedral MnCl42– anion is slightly distorted with the Mn—Cl distances falling in the range 2.3469 (10)–2.3941 (9) Å. The distortion value of 0.044 relative to the ideal tetrahedron was obtained by continuous shape measurement (CShM) analysis. In the crystal, the cations and anions form separate stacks propagating along the a-axis direction. The organic cations display weak π–π stacking. The anions, which are stacked identically one above the other, demonstrate loose packing; the minimum Mn⋯Mn separation in the cation stack is approximately 7.49 Å. The investigation of the fluorescent properties of a powdered sample of (I) showed no emission. X-band EPR data for (I) at 293 and 77 K revealed broad fine structure signals, indicating moderate zero-field splitting. Full Article text
ni Crystal structure and Hirshfeld surface analysis of (E)-3-(benzylideneamino)-5-phenylthiazolidin-2-iminium bromide By scripts.iucr.org Published On :: 2020-02-21 The central thiazolidine ring of the title salt, C16H16N3S+·Br−, adopts an envelope conformation, with the C atom bearing the phenyl ring as the flap atom. In the crystal, the cations and anions are linked by N—H⋯Br hydrogen bonds, forming chains parallel to the b-axis direction. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (46.4%), C⋯H/H⋯C (18.6%) and H⋯Br/Br⋯H (17.5%) interactions. Full Article text
ni Crystal structure of a two-dimensional metal–organic framework assembled from lithium(I) and γ-cyclodextrin By scripts.iucr.org Published On :: 2020-02-14 The crystal structure of the polymeric title compound, catena-poly[[[diaqualithium]-μ-γ-cyclodextrin(1−)-[aqualithium]-μ-γ-cyclodextrin(1−)] pentadecahydrate], {[Li2(C48H79O40)2(H2O)3]·15H2O}n, consists of deprotonated γ-cyclodextrin (CD) molecules assembled by lithium ions into metal–organic ribbons that are cross-linked by multiple O—H⋯O hydrogen bonds into sheets extending parallel to (0overline11). Within a ribbon, one Li+ ion is coordinated by one deprotonated hydroxyl group of the first γ-CD torus and by one hydroxyl group of the second γ-CD torus as well as by two water molecules. The other Li+ ion is coordinated by one deprotonated hydroxyl and by one hydroxyl group of the second γ-CD torus, by one hydroxyl group of the first γ-CD torus as well as by one water molecule. The coordination spheres of both Li+ cations are distorted tetrahedral. The packing of the structure constitute channels along the a axis. Parts of the hydroxymethyl groups in cyclodextrin molecules as well as water molecules show two-component disorder. Electron density associated with additional disordered solvent molecules inside the cavities was removed with the SQUEEZE [Spek (2015). Acta Cryst. C71, 9–18] routine in PLATON. These solvent molecules are not considered in the given chemical formula and other crystal data. Five out of the sixteen hydroxymethyl groups and one water molecule are disordered over two sets of sites. Full Article text
ni A binuclear CuII/CaII thiocyanate complex with a Schiff base ligand derived from o-vanillin and ammonia By scripts.iucr.org Published On :: 2020-02-21 The new heterometallic complex, aqua-1κO-bis(μ2-2-iminomethyl-6-methoxyphenolato-1κ2O1,O6:2κ2O1,N)bis(thiocyanato-1κN)calcium(II)copper(II), [CaCu(C8H8NO2)2(NCS)2(H2O)], has been synthesized using a one-pot reaction of copper powder, calcium oxide, o-vanillin and ammonium thiocyanate in methanol under ambient conditions. The Schiff base ligand (C8H9NO2) is generated in situ from the condensation of o-vanillin and ammonia, which is released from the initial NH4SCN. The title compound consists of a discrete binuclear molecule with a {Cu(μ-O)2Ca} core, in which the Cu⋯Ca distance is 3.4275 (6) Å. The coordination geometries of the four-coordinate copper atom in the [CuN2O2] chromophore and the seven-coordinate calcium atom in the [CaO5N2] chromophore can be described as distorted square planar and pentagonal bipyramidal, respectively. In the crystal, O—H⋯S hydrogen bonds between the coordinating water molecules and thiocyanate groups form a supramolecular chain with a zigzag-shaped calcium skeleton. Full Article text
ni Whole-molecule disorder of the Schiff base compound 4-chloro-N-(4-nitrobenzylidene)aniline: crystal structure and Hirshfeld surface analysis By scripts.iucr.org Published On :: 2020-02-18 In the crystal of the title Schiff base compound, C13H9ClN2O2, [CNBA; systematic name: (E)-N-(4-chlorophenyl)-1-(4-nitrophenyl)methanimine], the CNBA molecule shows whole-molecule disorder (occupancy ratio 0.65:0.35), with the disorder components related by a twofold rotation about the shorter axis of the molecule. The aromatic rings are inclined to each other by 39.3 (5)° in the major component and by 35.7 (9)° in the minor component. In the crystal, C—H⋯O hydrogen bonds predominate in linking the major components, while weak C—H⋯Cl interactions predominate in linking the minor components. The result is the formation of corrugated layers lying parallel to the ac plane. The crystal packing was analysed using Hirshfeld surface analysis and compared with related structures. Full Article text
ni Polymorphism of 2-(5-benzyl-6-oxo-3-phenyl-1,6-dihydropyridazin-1-yl)acetic acid with two monoclinic modifications: crystal structures and Hirshfeld surface analyses By scripts.iucr.org Published On :: 2020-02-25 Two polymorphs of the title compound, C19H16N2O3, were obtained from ethanolic (polymorph I) and methanolic solutions (polymorph II), respectively. Both polymorphs crystallize in the monoclinic system with four formula units per cell and a complete molecule in the asymmetric unit. The main difference between the molecules of (I) and (II) is the reversed position of the hydroxy group of the carboxylic function. All other conformational features are found to be similar in the two molecules. The different orientation of the OH group results in different hydrogen-bonding schemes in the crystal structures of (I) and (II). Whereas in (I) intermolecular O—H⋯O hydrogen bonds with the pyridazinone carbonyl O atom as acceptor generate chains with a C(7) motif extending parallel to the b-axis direction, in the crystal of (II) pairs of inversion-related O—H⋯O hydrogen bonds with an R22(8) ring motif between two carboxylic functions are found. The intermolecular interactions in both crystal structures were analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots. Full Article text
ni Syntheses and crystal structures of the one-dimensional coordination polymers formed by [Ni(cyclam)]2+ cations and 1,3-bis(3-carboxypropyl)tetramethyldisiloxane anions in different degrees of deprotonation By scripts.iucr.org Published On :: 2020-02-25 The asymmetric units of the title compounds, namely, catena-poly[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-μ-1,3-bis(3-carboxylatopropyl)tetramethyldisiloxane-κ2O:O'], [Ni(C10H24O5Si2)(C12H24N4)]n (I), and catena-poly[[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-μ-4-({[(3-carboxypropyl)dimethylsilyl]oxy}dimethylsilyl)butanoato-κ2O:O'] perchlorate], {[Ni(C10H25O5Si2)(C12H24N4)]ClO4}n (II), consist of one (in I) or two crystallographically non-equivalent (in II) centrosymmetric macrocyclic cations and one centrosymmetric dianion (in I) or two centrosymmetric monoanions (in II). In each compound, the metal ion is coordinated by the four secondary N atoms of the macrocyclic ligand, which adopts the most energetically stable trans-III conformation, and the mutually trans O atoms of the carboxylate in a slightly tetragonally distorted trans-NiN4O2 octahedral coordination geometry. The crystals of both types of compounds are composed of parallel polymeric chains of the macrocyclic cations linked by the anions of the acid running along the [101] and [110] directions in I and II, respectively. In I, each polymeric chain is linked to four neighbouring ones by hydrogen bonding between the NH groups of the macrocycle and the carboxylate O atoms, thus forming a three-dimensional supramolecular network. In II, each polymeric chain contacts with only two neighbours, forming hydrogen bonds between the partially protonated carboxylic groups of the bridging ligand. As a result, a lamellar structure is formed with the layers oriented parallel to the (1overline{1}1) plane. Full Article text
ni Unexpected formation of a co-crystal containing the chalcone (E)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-2-en-1-one and the keto–enol tautomer (Z)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophe By scripts.iucr.org Published On :: 2020-03-03 The title crystal structure is assembled from the superposition of two molecular structures, (E)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-2-en-1-one, C12H9ClOS2 (93%), and (Z)-1-(5-chlorothiophen-2-yl)-3-(3-methylthiophen-2-yl)prop-1-en-1-ol, C12H11ClOS2 (7%), 0.93C12H9ClOS2·0.07C12H11ClOS2. Both were obtained from the reaction of 3-methylthiophene-2-carbaldehyde and 1-(5-chlorothiophen-2-yl)ethanone. In the extended structure of the major chalcone component, molecules are linked by a combination of C—H⋯O/S, Cl⋯Cl, Cl⋯π and π–π interactions, leading to a compact three-dimensional supramolecular assembly. Full Article text
ni Crystal structure and Hirshfeld surface analysis of 4-allyl-2-methoxy-6-nitrophenol By scripts.iucr.org Published On :: 2020-02-28 The asymmetric unit of the title compound, C10H11NO4, which was synthesized via nitration reaction of eugenol (4-allyl-2-methoxyphenol) with a mixture of nitric acid and sulfuric acid, consists of three independent molecules of similar geometry. Each molecule displays an intramolecular hydrogen bond involving the hydroxide and the nitro group forming an S(6) motif. The crystal cohesion is ensured by intermolecular C—H⋯O hydrogen bonds in addition to π–π stacking interactions between the aromatic rings [centroid–centroid distances = 3.6583 (17)–4.0624 (16) Å]. The Hirshfeld surface analysis and the two-dimensional fingerprint plots show that H⋯H (39.6%), O⋯H/H⋯O (37.7%), C⋯H/H⋯C (12.5%) and C⋯C (4%) are the most important contributors towards the crystal packing. Full Article text
ni Bis(4-hydroxy-N-isopropyl-N-methyltryptammonium) fumarate: a new crystalline form of miprocin By scripts.iucr.org Published On :: 2020-03-10 The title compound, bis(4-hydroxy-N-isopropyl-N-methyltryptammonium) (4-HO-MiPT) fumarate (systematic name: bis{[2-(4-hydroxy-1H-indol-3-yl)ethyl](methyl)propan-2-ylazanium} but-2-enedioate), 2C14H21N2O+·C4H2O42−, has a singly protonated tryptammonium cation and one half of a fumarate dianion in the asymmetric unit. The tryptammonium and fumarate ions are held together in one-dimensional chains by N—H⋯O and O—H⋯O hydrogen bonds. These chains are a combination of R42(20) rings, and C22(15) and C44(30) parallel chains along (110). They are further consolidated by N—H⋯π interactions. There are two two-component types of disorder impacting the tryptammonium fragment with a 0.753 (7):0.247 (7) occupancy ratio and one of the fumarate oxygen atoms with a 0.73 (8):0.27 (8) ratio. Full Article text
ni A redetermination of the crystal structure of the mannitol complex NH4[Mo2O5(C6H11O6)]·H2O: hydrogen-bonding scheme and Hirshfeld surface analysis By scripts.iucr.org Published On :: 2020-03-10 The redetermined structure [for the previous study, see: Godfrey & Waters (1975). Cryst. Struct. Commun. 4, 5–8] of ammonium μ-oxido-μ-[1,5,6-trihydroxyhexane-2,3,4-tris(olato)]bis[dioxidomolybdenum(V)] monohydrate, NH4[Mo2(C6H11O6)O5]·H2O, was obtained from an attempt to prepare a glutamic acid complex from the [Co2Mo10H4O38]6− anion. Subsequent study indicated the complex arose from a substantial impurity of mannitol in the glutamic acid sample used. All hydrogen atoms have been located in the present study and the packing displays N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds. A Hirshfeld surface analysis was also performed. Full Article text
ni The first coordination compound of 6-fluoronicotinate: the crystal structure of a one-dimensional nickel(II) coordination polymer containing the mixed ligands 6-fluoronicotinate and 4,4'-bipyridine By scripts.iucr.org Published On :: 2020-03-10 A one-dimensional nickel(II) coordination polymer with the mixed ligands 6-fluoronicotinate (6-Fnic) and 4,4'-bipyridine (4,4'-bpy), namely, catena-poly[[diaquabis(6-fluoropyridine-3-carboxylato-κO)nickel(II)]-μ-4,4'-bipyridine-κ2N:N'] trihydrate], {[Ni(6-Fnic)2(4,4'-bpy)(H2O)2]·3H2O}n, (1), was prepared by the reaction of nickel(II) sulfate heptahydrate, 6-fluoronicotinic acid (C6H4FNO2) and 4,4'-bipyridine (C10H8N2) in a mixture of water and ethanol. The nickel(II) ion in 1 is octahedrally coordinated by the O atoms of two water molecules, two O atoms from O-monodentate 6-fluoronicotinate ligands and two N atoms from bridging 4,4'-bipyridine ligands, forming a trans isomer. The bridging 4,4'-bipyridine ligands connect symmetry-related nickel(II) ions into infinite one-dimensional polymeric chains running in the [1overline{1}0] direction. In the extended structure of 1, the polymeric chains and lattice water molecules are connected into a three-dimensional hydrogen-bonded network via strong O—H⋯O and O—H⋯N hydrogen bonds, leading to the formation of distinct hydrogen-bond ring motifs: octameric R88(24) and hexameric R86(16) loops. Full Article text
ni Crystal structure of 1,4,8,11-tetramethyl-1,4,8,11-tetraazoniacyclotetradecane bis[chloridochromate(VI)] dichloride from synchrotron X-ray data By scripts.iucr.org Published On :: 2020-03-10 The crystal structure of title compound, (C14H36N4)[CrO3Cl]2Cl2, has been determined by synchrotron radiation X-ray crystallography at 220 K. The macrocyclic cation lies across a crystallographic inversion center and hence the asymmetric unit contains one half of the organic cation, one chlorochromate anion and one chloride anion. Both the Cl− anion and chlorochromate Cl atom are involved in hydrogen bonding. In the crystal, hydrogen bonds involving the 1,4,8,11-tetramethyl-1,4,8,11-tetraazoniacyclotetradecane (TMC) N—H groups and C—H groups as donor groups and three O atoms of the chlorochromate and the chloride anion as acceptor groups link the components, giving rise to a three-dimensional network. Full Article text
ni Different packing motifs in the crystal structures of three molecular salts containing the 2-amino-5-carboxyanilinium cation: C7H9N2O2+·Cl−, C7H9N2O2+·Br− and C7H9N2O2+·NO3−·H2O By scripts.iucr.org Published On :: 2020-03-13 The syntheses and crystal structures of three molecular salts of protonated 3,4-diaminobenzoic acid, viz. 2-amino-5-carboxyanilinium chloride, C7H9N2O2+·Cl−, (I), 2-amino-5-carboxyanilinium bromide, C7H9N2O2+·Br−, (II), and 2-amino-5-carboxyanilinium nitrate monohydrate, C7H9N2O2+·NO3−·H2O, (III), are described. The cation is protonated at the meta-N atom (with respect to the carboxy group) in each case. In the crystal of (I), carboxylic acid inversion dimers linked by pairwise O—H⋯O hydrogen bonds are seen and each N—H group forms a hydrogen bond to a chloride ion to result in (100) undulating layers of chloride ions bridged by the inversion dimers into a three-dimensional network. The extended structure of (II) features O—H⋯Br, N—H⋯Br and N—H⋯O hydrogen bonds: the last of these generates C(7) chains of cations. Overall, the packing in (II) features undulating (100) sheets of bromide ions alternating with the organic cations. Intermolecular interactions in the crystal of (III) include O—H⋯O, O—H⋯(O,O), N—H⋯O, N—H⋯N and O—H⋯N links. The cations are linked into (001) sheets, and the nitrate ions and water molecules form undulating chains. Taken together, alternating (001) slabs of organic cations plus anions/water molecules result. Hirshfeld surfaces and fingerprint plots were generated to give further insight into the intermolecular interactions in these structures. The crystal used for the data collection of (II) was twinned by rotation about [100] in reciprocal space in a 0.4896 (15):0.5104 (15) ratio. Full Article text
ni Silver(I) nitrate two-dimensional coordination polymers of two new pyrazinethiophane ligands: 5,7-dihydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine and 3,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b:6',7'-e By scripts.iucr.org Published On :: 2020-03-13 The two new pyrazineophanes, 5,7-dihydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine, C8H8N2S2, L1, and 3,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b:6',7'-e]pyrazine, C12H16N2S4, L2, both crystallize with half a molecule in the asymmetric unit; the whole molecules are generated by inversion symmetry. The molecule of L1, which is planar (r.m.s. deviation = 0.008 Å), consists of two sulfur atoms linked by a rigid tetra-2,3,5,6-methylenepyrazine unit, forming planar five-membered rings. The molecule of L2 is step-shaped and consists of two S–CH2–CH2–S chains linked by the central rigid tetra-2,3,5,6-methylenepyrazine unit, forming eight-membered rings that have twist-boat-chair configurations. In the crystals of both compounds, there are no significant intermolecular interactions present. The reaction of L1 with silver nitrate leads to the formation of a two-dimensional coordination polymer, poly[(μ-5,7-dihydro-1H,3H-dithieno[3,4-b;3',4'-e]pyrazine-κ2S:S')(μ-nitrato-κ2O:O')silver(I)], [Ag(NO3)(C8H8N2S2)]n, (I), with the nitrato anion bridging two equivalent silver atoms. The central pyrazine ring is situated about an inversion center and the silver atom lies on a twofold rotation axis that bisects the nitrato anion. The silver atom has a fourfold AgO2S2 coordination sphere with a distorted shape. The reaction of L2 with silver nitrate also leads to the formation of a two-dimensional coordination polymer, poly[[μ33,4,8,10,11,13-hexahydro-1H,6H-bis([1,4]dithiocino)[6,7-b;6',7'-e]pyrazine-κ3S:S':S''](nitrato-κO)silver(I)], [Ag(NO3)(C12H16N2S4)]n, (II), with the nitrate anion coordinating in a monodentate manner to the silver atom. The silver atom has a fourfold AgOS3 coordination sphere with a distorted shape. In the crystals of both complexes, the networks are linked by C—H⋯O hydrogen bonds, forming supramolecular frameworks. There are additional C—H⋯S contacts present in the supramolecular framework of II. Full Article text
ni Synthesis and crystal structure of a 6-chloronicotinate salt of a one-dimensional cationic nickel(II) coordination polymer with 4,4'-bipyridine By scripts.iucr.org Published On :: 2020-04-02 A 6-chloronicotinate (6-Clnic) salt of a one-dimensional cationic nickel(II) coordination polymer with 4,4'-bipyridine (4,4'-bpy), namely, catena-poly[[[tetraaquanickel(II)]-μ-4,4'-bipyridine-κ2N:N'] bis(6-chloronicotinate) tetrahydrate], {[Ni(C10H8N2)(H2O)4](C6H3ClNO2)2·4H2O}n or {[Ni(4,4'-bpy)(H2O)4](6-Clnic)2·4H2O}n, (1), was prepared by the reaction of nickel(II) sulfate heptahydrate, 6-chloronicotinic acid and 4,4'-bipyridine in a mixture of water and ethanol. The molecular structure of 1 comprises a one-dimensional polymeric {[Ni(4,4'-bpy)(H2O)4]2+}n cation, two 6-chloronicotinate anions and four water molecules of crystallization per repeating polymeric unit. The nickel(II) ion in the polymeric cation is octahedrally coordinated by four water molecule O atoms and by two 4,4'-bipyridine N atoms in the trans position. The 4,4'-bipyridine ligands act as bridges and, thus, connect the symmetry-related nickel(II) ions into an infinite one-dimensional polymeric chain extending along the b-axis direction. In the extended structure of 1, the polymeric chains of {[Ni(4,4'-bpy)(H2O)4]2+}n, the 6-chloronicotinate anions and the water molecules of crystallization are assembled into an infinite three-dimensional hydrogen-bonded network via strong O—H⋯O and O—H⋯N hydrogen bonds, leading to the formation of the representative hydrogen-bonded ring motifs: tetrameric R24(8) and R44(10) loops, a dimeric R22(8) loop and a pentameric R45(16) loop. Full Article text
ni Synthesis, crystal structure and Hirshfeld and thermal analysis of bis[benzyl 2-(heptan-4-ylidene)hydrazine-1-carboxylate-κ2N2,O]bis(thiocyanato)nickel(II) By scripts.iucr.org Published On :: 2020-04-07 The title centrosymmetric NiII complex, [Ni(NCS)2(C15H22N2O2)2], crystallizes with one half molecule in the asymmetric unit of the monoclinic unit cell. The complex adopts an octahedral coordination geometry with two mutually trans benzyl-2-(heptan-4-ylidene)hydrazine-1-carboxylate ligands in the equatorial plane with the axial positions occupied by N-bound thiocyanato ligands. The overall conformation of the molecule is also affected by two, inversion-related, intramolecular C—H⋯O hydrogen bonds. The crystal structure features N—H⋯S, C—H⋯S and C—H⋯N hydrogen bonds together with C—H⋯π contacts that stack the complexes along the b-axis direction. The packing was further explored by Hirshfeld surface analysis. The thermal properties of the complex were also investigated by simultaneous TGA–DTA analyses. Full Article text
ni Crystal structures of {1,1,1-tris[(salicylaldimino)methyl]ethane}gallium as both a pyridine solvate and an acetonitrile 0.75-solvate and {1,1,1-tris[(salicylaldimino)methyl]ethane}indium dichloro By scripts.iucr.org Published On :: 2020-04-03 The sexadentate ligand 1,1,1-tris[(salicylideneamino)methyl]ethane has been reported numerous times in its triply deprotonated form coordinated to transition metals and lanthanides, yet it has been rarely employed with main-group elements, including in substituted forms. Its structures with gallium and indium are reported as solvates, namely, ({[(2,2-bis{[(2-oxidobenzylidene)amino-κ2N,O]methyl}propyl)imino]methyl}phenololato-κ2N,O)gallium(III) pyridine monosolvate, [Ga(C26H24N3O3)]·C5H5N, the acetonitrile 0.75-solvate, [Ga(C26H24N3O3)]·0.75C2H3N, and ({[(2,2-bis{[(2-oxidobenzylidene)amino-κ2N,O]methyl}propyl)imino]methyl}phenololato-κ2N,O)indium(III) dichloromethane monosolvate, [In(C26H24N3O3)]·CH2Cl2. All three metal complexes are pseudo-octahedral and each structure contains multiple weak C—H⋯O and/or C—H⋯N intermolecular hydrogen-bonding interactions. The syntheses and additional characterization in the forms of melting points, high-resolution mass spectra, infra-red (IR) spectra, and 1H and 13C NMR spectra are also reported. Full Article text
ni Ni3Te2O2(PO4)2(OH)4, an open-framework structure isotypic with Co3Te2O2(PO4)2(OH)4 By scripts.iucr.org Published On :: 2020-04-03 Single crystals of Ni3(TeO(OH)2)2(PO4)2, trinickel(II) bis[(oxidodihydoxidotellurate(IV)] bis(phosphate),were obtained by hydrothermal synthesis at 483 K, starting from NiCO3·2Ni(OH)2, TeO2 and H3PO4 in a molar ratio of 1:2:2. The crystal structure of Ni3Te2O2(PO4)2(OH)4 is isotypic with that of Co3Te2O2(PO4)2(OH)4 [Zimmermann et al. (2011). J. Solid State Chem. 184, 3080–3084]. The asymmetric unit comprises two Ni (site symmetries overline{1}, 2/m) one Te (m), one P (m), five O (three m, two 1) and one H (1) sites. The tellurium(IV) atom shows a coordination number of five, with the corresponding [TeO3(OH)2] polyhedron having a distorted square-pyramidal shape. The two NiII atoms are both octahedrally coordinated but form different structural elements: one constitutes chains made up from edge-sharing [NiO6] octahedra extending parallel to [010], and the other isolated [NiO2(OH)4] octahedra. The two kinds of nickel/oxygen octahedra are connected by the [TeO3(OH)2] pyramids and the [PO4] tetrahedra through edge- and corner-sharing into a three-dimensional framework structure with channels extending parallel to [010]. Hydrogen bonds of medium strength between the hydroxy groups and one of the phosphate O atoms consolidate the packing. A quantitative structure comparison between Ni3Te2O2(PO4)2(OH)4 and Co3Te2O2(PO4)2(OH)4 is made. Full Article text
ni Synthesis and crystal structures of tetrameric [2-(4,4-dimethyl-2-oxazolin-2-yl)anilido]sodium and tris[2-(4,4-dimethyl-2-oxazolin-2-yl)anilido]ytterbium(III) By scripts.iucr.org Published On :: 2020-04-21 Reaction of 2-(4,4-dimethyl-2-oxazolin-2-yl)aniline (H2-L1) with one equivalent of Na[N(SiMe3)2] in toluene afforded pale-yellow crystals of tetrameric poly[bis[μ3-2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido][μ2-2-(4,4-dimethyl-2-oxazolin-2-yl)aniline]tetrasodium(I)], [Na4(C11H13N2O)4]n or [Na4(H-L1)4]n (2), in excellent yield. Subsequent reaction of [Na4(H-L1)4]n (2) with 1.33 equivalents of anhydrous YbCl3 in a 50:50 mixture of toluene–THF afforded yellow crystals of tris[2-(4,4-dimethyl-2-oxazolin-2-yl)anilinido]ytterbium(III), [Yb(C11H13N2O)3] or Yb(H-L1)3 (3) in moderate yield. Direct reaction of three equivalents of 2-(4',4'-dimethyl-2'-oxazolinyl)aniline (H2-L1) with Yb[N(SiMe3)2]3 in toluene resulted in elimination of hexamethyldisilazane, HN(SiMe3)2, and produced Yb(H-L1)3 (3) in excellent yield. The structure of 2 consists of tetrameric Na4(H-L1)4 subunits in which each Na+ cation is bound to two H-L1 bridging bidentate ligands and these subunits are connected into a polymeric chain by two of the four oxazoline O atoms bridging to Na+ cations in the adjacent tetramer. This results in two 4-coordinate and two 5-coordinate Na+ cations within each tetrameric unit. The structure of 3 consists of a distorted octahedron where the bite angle of ligand L1 ranges between 74.72 (11) and 77.79 (11) degrees. The oxazoline (and anilide) N atoms occupy meridional sites such that for one ligand an anilide nitrogen is trans to an oxazoline nitrogen while for the other two oxazoline N atoms are trans to each other. This results in a significantly longer Yb—N(oxazoline) distance [2.468 (3) Å] for the bond trans to the anilide compared to those for the oxazoline N atoms trans to one another [2.376 (3), 2.390 (3) Å]. Full Article text
ni Cis versus trans arrangement of dithiocarbazate ligands in bis-chelated Ni and Cu complexes By scripts.iucr.org Published On :: 2020-04-21 The structures are described of two bis-chelated metal complexes of nickel(II) and copper(II) with S-n-hexyl 3-(1-phenylethylidene)dithiocarbazate Schiff bases in a cis configuration, namely, bis[S-n-hexyl 3-(1-phenylethylidene)dithiocarbazato-κ2N3,S]nickel(II), [Ni(C15H21N2S2)2], and bis[S-n-hexyl 3-(1-phenylethylidene)dithiocarbazato-κ2N3,S]copper(II), [Cu(C15H21N2S2)2]. In both complexes, the metals have distorted square-planar geometries. A search in the Cambridge Structural Database [Groom et al. (2016). Acta Cryst. B72, 171–179] for bis-chelated nickel(II) and copper(II) complexes with similar Schiff bases retrieved 55 and 36 hits for the two metals, respectively. An analysis of the geometrical parameters of complexes showing cis and trans configurations is reported and the values compared with those for the complexes described in this work. Full Article text
ni Crystal structure, Hirshfeld surface analysis and DFT studies of 6-bromo-3-(12-bromododecyl)-2-(4-nitrophenyl)-4H-imidazo[4,5-b]pyridine By scripts.iucr.org Published On :: 2020-04-21 The title compound, C24H30Br2N4O2, consists of a 2-(4-nitrophenyl)-4H-imidazo[4,5-b]pyridine entity with a 12-bromododecyl substituent attached to the pyridine N atom. The middle eight-carbon portion of the side chain is planar to within 0.09 (1) Å and makes a dihedral angle of 21.9 (8)° with the mean plane of the imidazolopyridine moiety, giving the molecule a V-shape. In the crystal, the imidazolopyridine units are associated through slipped π–π stacking interactions together with weak C—HPyr⋯ONtr and C—HBrmdcyl⋯ONtr (Pyr = pyridine, Ntr = nitro and Brmdcyl = bromododecyl) hydrogen bonds. The 12-bromododecyl chains overlap with each other between the stacks. The terminal –CH2Br group of the side chain shows disorder over two resolved sites in a 0.902 (3):0.098 (3) ratio. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (48.1%), H⋯Br/Br⋯H (15.0%) and H⋯O/O⋯H (12.8%) interactions. The optimized molecular structure, using density functional theory at the B3LYP/ 6–311 G(d,p) level, is compared with the experimentally determined structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Full Article text
ni Hydrogen-bonding patterns in 2,2-bis(4-methylphenyl)hexafluoropropane pyridinium and ethylenediammonium salt crystals By scripts.iucr.org Published On :: 2020-04-24 The crystal structures of two salt crystals of 2,2-bis(4-methylphenyl)hexafluoropropane (Bmphfp) with amines, namely, dipyridinium 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)dibenzoate 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)dibenzoic acid, 2C5H6N+·C17H8F6O42−·C17H10F6O4, (1), and a monohydrated ethylenediammonium salt ethane-1,2-diaminium 4,4'-(1,1,1,3,3,3-hexafluoropropane-2,2-diyl)dibenzoate monohydrate, C2H10N22+·C17H8F6O42−·H2O, (2), are reported. Compounds 1 and 2 crystallize, respectively, in space group P21/c with Z' = 2 and in space group Pbca with Z' = 1. The crystals of compound 1 contain neutral and anionic Bmphfp molecules, and form a one-dimensional hydrogen-bonded chain motif. The crystals of compound 2 contain anionic Bmphfp molecules, which form a complex three-dimensional hydrogen-bonded network with the ethylenediamine and water molecules. Full Article text
ni Handbook of Industrial Crystallization. Third edition. Edited by Allan S. Myerson, Deniz Erdemir and Alfred Y. Lee. Cambridge University Press, 2019. Pp. 538. Price GBP 145 (hardcover). ISBN 9780521196185. By scripts.iucr.org Published On :: 2020-04-14 Full Article text
ni Impact and behavior of Sn during the Ni/GeSn solid-state reaction By scripts.iucr.org Published On :: 2020-04-14 Ni-based intermetallics are promising materials for forming efficient contacts in GeSn-based Si photonic devices. However, the role that Sn might have during the Ni/GeSn solid-state reaction (SSR) is not fully understood. A comprehensive analysis focused on Sn segregation during the Ni/GeSn SSR was carried out. In situ X-ray diffraction and cross-section transmission electron microscopy measurements coupled with energy-dispersive X-ray spectrometry and electron energy-loss spectroscopy atomic mappings were performed to follow the phase sequence, Sn distribution and segregation. The results showed that, during the SSR, Sn was incorporated into the intermetallic phases. Sn segregation happened first around the grain boundaries (GBs) and then towards the surface. Sn accumulation around GBs hampered atom diffusion, delaying the growth of the Ni(GeSn) phase. Higher thermal budgets will thus be mandatory for formation of contacts in high-Sn-content photonic devices, which could be detrimental for thermal stability. Full Article text
ni Sub-millisecond time-resolved small-angle neutron scattering measurements at NIST By scripts.iucr.org Published On :: 2020-04-14 Instrumentation for time-resolved small-angle neutron scattering measurements with sub-millisecond time resolution, based on Gähler's TISANE (time-involved small-angle neutron experiments) concept, is in operation at NIST's Center for Neutron Research. This implementation of the technique includes novel electronics for synchronizing the neutron pulses from high-speed counter-rotating choppers with a periodic stimulus applied to a sample. Instrumentation details are described along with measurements demonstrating the utility of the technique for elucidating the reorientation dynamics of anisometric magnetic particles. Full Article text