si

6-[(tert-Butyl­dimethyl­sil­yl)­oxy]-3-ethenyl-7-meth­oxy-4-[(tri­methyl­sil­yl)ethyn­yl]naphtho­[2,3-c]furan-1(3H)-one

The tricyclic core in the title compound, C26H34O4Si2, shows disorder of the furan ring and deviates slightly from planarity, with the largest displacement from the least-squares plane [0.166 (2) Å] for the major disordered part of the methine C atom. To this C atom the likewise disordered vinyl group is attached, lying nearly perpendicular to the tricyclic core. In the crystal, mutual C—H⋯π inter­actions between the methine group of the furan ring and the central ring of the tricyclic core of an adjacent mol­ecule lead to inversion-related dimers.




si

Poly[(μ4-5,7-di­hydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine-κ4N:N':S:S')tetra-μ3-iodido-tetra­copper]: a three-dimensional copper(I) coordination polymer

The reaction of ligand 5,7-di­hydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine (L) with CuI lead to the formation of a three-dimensional coordination polymer, incorporating the well known [CuxIx]n staircase motif (x = 4). These polymer [Cu4I4]n chains are linked via the N and S atoms of the ligand to form the three-dimensional coordination polymer poly[(μ4-5,7-di­hydro-1H,3H-dithieno[3,4-b:3',4'-e]pyrazine-κ4N:N':S:S')tetra-μ3-iodido-tetra­copper], [Cu4I4(C8H8N2S2)]n (I). The asymmetric unit is composed of half a ligand mol­ecule, with the pyrazine ring located about a center of symmetry, and two independent copper(I) atoms and two independent I− ions forming the staircase motif via centers of inversion symmetry. The framework is consolidated by C—H⋯I hydrogen bonds.




si

6-Methyl-4-{[4-(tri­methyl­sil­yl)-1H-1,2,3-triazol-1-yl]meth­yl}-2H-chromen-2-one

In the title compound, C16H19N3O2Si, the dihedral angle between the coumarin ring system (r.m.s. deviation = 0.031 Å) and the triazole ring is 73.81 (8)°. In the crystal, mol­ecules are linked into [010] chains by weak C—H⋯O inter­actions.




si

Poly[[μ4-3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6',7'-e]pyrazine]di-μ-iodido-dicopper(I)]: a two-dimensional copper(I) coordination polymer

The reaction of ligand 3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6',7'-e]pyrazine (L) with CuI led to the formation of a two-dimensional coordination polymer, incorporating a [Cu2I2] motif. These units are linked via the four S atoms of the ligand to form the title two-dimensional coordination poly­mer, poly[[μ4-3,4,8,10,11,13-hexa­hydro-1H,6H-bis­([1,4]di­thio­cino)[6,7-b:6',7'-e]pyrazine]di-μ-iodido-dicopper(I)], [Cu2I2(C12H16N2S4)]n, (I). The asymmetric unit is composed of a ligand mol­ecule, two copper(I) atoms and two I− ions. Both copper(I) atoms are fourfold S2I2 coordinate with almost regular trigonal-pyramidal environments. In the crystal, the layers, lying parallel to (102), are linked by C—H⋯I hydrogen bonds, forming a supra­molecular framework.




si

Crystal structure and Hirshfeld surface analysis of 4-[4-(1H-benzo[d]imidazol-2-yl)phen­oxy]phthalo­nitrile dimethyl sulfoxide monosolvate

This work presents the synthesis and structural characterization of [4-(1H-benzo[d]imidazol-2-yl)phen­oxy]phthalo­nitrile, a phthalo­nitrile derivative carrying a benzimidazole moiety. The compound crystallizes as its dimethyl sulfoxide monosolvate, C21H12N4O·(CH3)2SO. The dihedral angle between the two fused rings in the heterocyclic ring system is 2.11 (1)°, while the phenyl ring attached to the imidazole moiety is inclined by 20.7 (1)° to the latter. In the crystal structure, adjacent mol­ecules are connected by pairs of weak inter­molecular C—H⋯N hydrogen bonds into inversion dimers. N—H⋯O and C—H⋯O hydrogen bonds with R21(7) graph-set motifs are also formed between the organic mol­ecule and the disordered dimethyl sulfoxide solvent [occupancy ratio of 0.623 (5):0.377 (5) for the two sites of the sulfur atom]. Hirshfeld surface analysis and fingerprint plots were used to investigate the inter­molecular inter­actions in the crystalline state.




si

Crystal structure, Hirshfeld surface analysis and HOMO–LUMO analysis of (E)-N'-(3-hy­droxy-4-meth­oxy­benzyl­idene)nicotinohydrazide monohydrate

The mol­ecule of the title Schiff base compound, C14H13N3O3·H2O, displays a trans configuration with respect to the C=N bond. The dihedral angle between the benzene and pyridine rings is 29.63 (7)°. The crystal structure features inter­molecular N—H⋯O, C—H⋯O, O—H⋯O and O—H⋯N hydrogen-bonding inter­actions, leading to the formation of a supramolecular framework. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (37.0%), O⋯H/H⋯O (23.7%)), C⋯H/H⋯C (17.6%) and N⋯H/H⋯N (11.9%) inter­actions. The title compound has also been characterized by frontier mol­ecular orbital analysis.




si

Crystal structure and Hirshfeld surface analysis of a conformationally unsymmetrical bis­chalcone: (1E,4E)-1,5-bis­(4-bromo­phen­yl)penta-1,4-dien-3-one

In the title bis­chalcone, C17H12Br2O, the olefinic double bonds are almost coplanar with their attached 4-bromo­phenyl rings [torsion angles = −10.2 (4) and −6.2 (4)°], while the carbonyl double bond is in an s-trans conformation with with respect to one of the C=C bonds and an s-cis conformation with respect to the other [C=C—C=O = 160.7 (3) and −15.2 (4)°, respectively]. The dihedral angle between the 4-bromo­phenyl rings is 51.56 (2)°. In the crystal, mol­ecules are linked into a zigzag chain propagating along [001] by weak C—H⋯π inter­actions. The conformations of related bis­chalcones are surveyed and a Hirshfeld surface analysis is used to investigate and qu­antify the inter­molecular contacts.




si

N-[2-(Tri­fluoro­meth­yl)phen­yl]maleamic acid: crystal structure and Hirshfeld surface analysis

The title mol­ecule, C11H8F3NO3, adopts a cis configuration across the –C=C– double bond in the side chain and the dihedral angle between the phenyl ring and side chain is 47.35 (1)°. The –COOH group adopts a syn conformation (O=C—O—H = 0°), unlike the anti conformation observed in related maleamic acids. In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds are connected via N—H⋯O hydrogen bonds and C—H⋯O inter­actions into (100) sheets, which are cross-linked by another C—H⋯O inter­action to result in a three-dimensional network. The Hirshfeld surface fingerprint plots show that the highest contribution to surface contacts arises from O⋯H/H⋯O contacts (26.5%) followed by H⋯F/F⋯H (23.4%) and H⋯H (17.3%).




si

Crystal structure and Hirshfeld surface analysis of (Z)-6-[(2-hy­droxy-4-methyl­anilino)­methyl­idene]-4-methyl­cyclo­hexa-2,4-dien-1-one

The title compound, C15H15NO2, is a Schiff base that exists in the keto–enamine tautomeric form and adopts a Z configuration. The mol­ecule is almost planar, with the two phenyl rings twisted relative to each other by 9.60 (18)°. There is an intra­molecular N—H⋯O hydrogen bond present forming an S(6) ring motif. In the crystal, pairs of O—H⋯O hydrogen bonds link adjacent mol­ecules into inversion dimers with an R22(18) ring motif. The dimers are linked by very weak π–π inter­actions, forming layers parallel to (overline{2}01). Hirshfeld surface analysis, two-dimensional fingerprint plots and the mol­ecular electrostatic potential surfaces were used to analyse the inter­molecular inter­actions, indicating that the most important contributions for the crystal packing are from H⋯H (55.2%), C⋯H/H⋯C (22.3%) and O⋯H/H⋯O (13.6%) inter­actions.




si

Crystal structure and Hirshfeld surface analysis of (Z)-6-[(2-hy­droxy-5-nitro­anilino)methyl­idene]-4-methyl­cyclo­hexa-2,4-dien-1-one

The title compound, C14H12N2O4, is a Schiff base that exists in the keto–enamine tautomeric form and adopts a Z configuration. The mol­ecule is almost planar, the rings making a dihedral angle of 4.99 (7)°. The mol­ecular structure is stabilized by an intra­molecular N—H⋯O hydrogen bond forming an S(6) ring motif. In the crystal, inversion-related mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming dimers with an R22(18) ring motif. The dimers are linked by pairs of C—H⋯O contacts with an R22(10) ring motif, forming ribbons extended along the [2overline{1}0] direction. Hirshfeld surface analysis, two-dimensional fingerprint plots and the mol­ecular electrostatic potential surfaces were used to analyse the inter­molecular inter­actions present in the crystal, indicating that the most important contributions for the crystal packing are from H⋯H (33.9%), O⋯H/H⋯O (29.8%) and C⋯H/H⋯C (17.3%) inter­actions.




si

2-[(4-Bromo­phen­yl)sulfan­yl]-2-meth­oxy-1-phenyl­ethan-1-one: crystal structure, Hirshfeld surface analysis and computational chemistry

The title compound, C15H13BrO2S, comprises three different substituents bound to a central (and chiral) methine-C atom, i.e. (4-bromo­phen­yl)sulfanyl, benzaldehyde and meth­oxy residues: crystal symmetry generates a racemic mixture. A twist in the mol­ecule is evident about the methine-C—C(carbon­yl) bond as evidenced by the O—C—C—O torsion angle of −20.8 (7)°. The dihedral angle between the bromo­benzene and phenyl rings is 43.2 (2)°, with the former disposed to lie over the oxygen atoms. The most prominent feature of the packing is the formation of helical supra­molecular chains as a result of methyl- and methine-C—H⋯O(carbon­yl) inter­actions. The chains assemble into a three-dimensional architecture without directional inter­actions between them. The nature of the weak points of contacts has been probed by a combination of Hirshfeld surface analysis, non-covalent inter­action plots and inter­action energy calculations. These point to the importance of weaker H⋯H and C—H⋯C inter­actions in the consolidation of the structure.




si

Crystal structure of tetra­kis­[μ-3-carboxy-1-(1,2,4-triazol-4-yl)adamantane-κ2N1:N2]tetra­fluoridodi-μ2-oxido-dioxidodisilver(I)divanadium(V) tetra­hydrate

The crystal structure of the title mol­ecular complex, [Ag2{VO2F2}2(C13H17N3O2)4]·4H2O, supported by the heterofunctional ligand tr-ad-COOH [1-(1,2,4-triazol-4-yl)-3-carb­oxy­adamantane] is reported. Four 1,2,4-triazole groups of the ligand link two AgI atoms, as well as AgI and VV centres, forming the heterobimetallic coordination cluster {AgI2(VVO2F2)2(tr)4}. VV exists as a vanadium oxofluoride anion and possesses a distorted trigonal–bipyramidal coordination environment [VO2F2N]. A carb­oxy­lic acid functional group of the ligand stays in a neutral form and is involved in hydrogen bonding with solvent water mol­ecules and VO2F2− ions of adjacent mol­ecules. The extended hydrogen-bonding network is responsible for the crystal packing in the structure.




si

The crystal structure of (RS)-7-chloro-2-(2,5-di­meth­oxy­phen­yl)-2,3-di­hydro­quinazolin-4(1H)-one: two hydrogen bonds generate an elegant three-dimensional framework structure

In the title compound, C61H15ClN2O3, the heterocyclic ring adopts an envelope conformation, folded across the N⋯N line, with the 2,5-di­meth­oxy­phenyl unit occupying a quasi-axial site. There are two N—H⋯O hydrogen bonds in the structure: one hydrogen bond links mol­ecules related by a 41 screw axis to form a C(6) chain, and the other links inversion-related pairs of mol­ecules to form an R22(8) ring. The ring motif links all of the chains into a continuous three-dimensional framework structure. Comparisons are made with the structures of some related compounds.




si

Crystal structure and Hirshfeld surface analysis of new polymorph of racemic 2-phenyl­butyramide

A new polymorph of the title compound, C10H13NO, was obtained by recrystallization of the commercial product from a water/ethanol mixture (1:1 v/v). Crystals of the previously reported racemic and homochiral forms of 2-phenyl­butyramide were grown from water–aceto­nitrile solution in 1:1 volume ratio [Khrustalev et al. (2014). Cryst. Growth Des. 14, 3360–3369]. While the previously reported racemic and enanti­opure forms of the title compound adopt very similar supra­molecular structures (hydrogen-bonded ribbons), the new racemic polymorph is stabilized by a single N—H⋯O hydrogen bond that links mol­ecules into chains along the c-axis direction with an anti­parallel (centrosymmetric) packing in the crystal. Hirshfeld mol­ecular surface analysis was employed to compare the inter­molecular inter­actions in the polymorphs of the title compound.




si

Hirshfeld surface analysis and crystal structure of N-(2-meth­oxy­phen­yl)acetamide

The title compound, C9H11NO2, was obtained as unexpected product from the reaction of (4-{2-benz­yloxy-5-[(E)-(3-chloro-4-methyl­phen­yl)diazen­yl]benzyl­idene}-2-phenyl­oxazol-5(4H)-one) with 2-meth­oxy­aniline in the presence of acetic acid as solvent. The amide group is not coplanar with the benzene ring, as shown by the C—N—C—O and C—N—C—C torsion angles of −2.5 (3) and 176.54 (19)°, respectively. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (53.9%), C⋯H/H⋯C (21.4%), O⋯H/H⋯O (21.4%) and N⋯H/H⋯N (1.7%) inter­actions.




si

Crystal structure and Hirshfeld surface analysis of tris­(2,2'-bi­pyridine)­nickel(II) bis­(1,1,3,3-tetra­cyano-2-eth­oxy­propenide) dihydrate

The title compound, [Ni(C10H8N2)3](C9H5N4O)2·2H2O, crystallizes as a racemic mixture in the monoclinic space group C2/c. In the crystal, the 1,1,3,3-tetracyano-2-ethoxypropenide anions and the water molecules are linked by O—H⋯N hydrogen bonds, forming chains running along the [010] direction. The bpy ligands of the cation are linked to the chain via C—H⋯π(cation) inter­actions involving the CH3 group. The inter­molecular inter­actions were investigated by Hirshfeld surface analysis and two-dimensional fingerprint plots.




si

Crystal structure of methyl α-l-rhamno­pyranosyl-(1→2)-α-l-rhamno­pyran­oside monohydrate

The title compound, C13H24O9·H2O, a structural model for part of bacterial O-anti­gen polysaccharides from Shigella flexneri and Escherichia coli, crystallizes with four independent disaccharide mol­ecules and four water mol­ecules in the asymmetric unit. The conformation at the glycosidic linkage joining the two rhamnosyl residues is described by the torsion angles φH of 39, 30, 37 and 37°, and ψH of −32, −35, −31 and −32°, which are the major conformation region known to be populated in an aqueous solution. The hexo­pyran­ose rings have the 1C4 chair conformation. In the crystal, the disaccharide and water mol­ecules are associated through O—H⋯O hydrogen bonds, forming a layer parallel to the bc plane. The layers stack along the a axis via hydro­phobic inter­actions between the methyl groups.




si

Bis(4-acet­oxy-N,N-di­methyl­tryptammonium) fumarate: a new crystalline form of psilacetin, an alternative to psilocybin as a psilocin prodrug

The title compound (systematic name: bis­{2-[4-(acet­yloxy)-1H-indol-3-yl]ethan-1-aminium} but-2-enedioate), 2C14H19N2O2+·C4H2O42−, has a single protonated psilacetin cation and one half of a fumarate dianion in the asymmetric unit. There are N—H⋯O hydrogen bonds between the ammonium H atoms and the fumarate O atoms, as well as N—H⋯O hydrogen bonds between the indole H atoms and the fumarate O atoms. The hydrogen bonds hold the ions together in infinite one-dimensional chains along [111].




si

Crystal structure and Hirshfeld surface analysis of ethyl 2-[5-(3-chloro­benz­yl)-6-oxo-3-phenyl-1,6-di­hydro­pyridazin-1-yl]acetate

The title pyridazinone derivative, C21H19ClN2O3, is not planar. The unsubstituted phenyl ring and the pyridazine ring are inclined to each other, making a dihedral angle of 17.41 (13)° whereas the Cl-substituted phenyl ring is nearly orthogonal to the pyridazine ring [88.19 (13)°]. In the crystal, C—H⋯O hydrogen bonds generate dimers with R22(10) and R22(24) ring motifs which are linked by C—H⋯O inter­actions, forming chains extending parallel to the c-axis direction. The inter­molecular inter­actions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most significant contributions to the crystal packing are from H⋯H (44.5%), C⋯H/H⋯C (18.5%), H⋯O/H⋯O (15.6%), Cl⋯H/H⋯Cl (10.6%) and C⋯C (2.8%) contacts.




si

Crystal structure, DFT study and Hirshfeld surface analysis of ethyl 6-chloro-2-eth­oxy­quinoline-4-carboxyl­ate

In the title quinoline derivative, C14H14ClNO3, there is an intra­molecular C—H⋯O hydrogen bond forming an S(6) graph-set motif. The mol­ecule is essentially planar with the mean plane of the ethyl acetate group making a dihedral angle of 5.02 (3)° with the ethyl 6-chloro-2-eth­oxy­quinoline mean plane. In the crystal, offset π–π inter­actions with a centroid-to-centroid distance of 3.4731 (14) Å link inversion-related mol­ecules into columns along the c-axis direction. Hirshfeld surface analysis indicates that H⋯H contacts make the largest contribution (50.8%) to the Hirshfeld surface.




si

Some chalcones derived from thio­phene-3-carbaldehyde: synthesis and crystal structures

The synthesis, spectroscopic data and crystal and mol­ecular structures of four 3-(3-phenyl­prop-1-ene-3-one-1-yl)thio­phene derivatives, namely 1-(4-hydroxy­phen­yl)-3-(thio­phen-3-yl)prop-1-en-3-one, C13H10O2S, (1), 1-(4-meth­oxy­phen­yl)-3-(thio­phen-3-yl)prop-1-en-3-one, C14H12O2S, (2), 1-(4-eth­oxy­phen­yl)-3-(thio­phen-3-yl)prop-1-en-3-one, C15H14O2S, (3), and 1-(4-­bromophen­yl)-3-(thio­phen-3-yl)prop-1-en-3-one, C13H9BrOS, (4), are described. The four chalcones have been synthesized by reaction of thio­phene-3-carbaldehyde with an aceto­phenone derivative in an absolute ethanol solution containing potassium hydroxide, and differ in the substituent at the para position of the phenyl ring: –OH for 1, –OCH3 for 2, –OCH2CH3 for 3 and –Br for 4. The thio­phene ring in 4 was found to be disordered over two orientations with occupancies 0.702 (4) and 0.298 (4). The configuration about the C=C bond is E. The thio­phene and phenyl rings are inclined by 4.73 (12) for 1, 12.36 (11) for 2, 17.44 (11) for 3 and 46.1 (6) and 48.6 (6)° for 4, indicating that the –OH derivative is almost planar and the –Br derivative deviates the most from planarity. However, the substituent has no real influence on the bond distances in the α,β-unsaturated carbonyl moiety. The mol­ecular packing of 1 features chain formation in the a-axis direction by O—H⋯O contacts. In the case of 2 and 3, the packing is characterized by dimer formation through C—H⋯O inter­actions. In addition, C—H⋯π(thio­phene) inter­actions in 2 and C—H⋯S(thio­phene) inter­actions in 3 contribute to the three-dimensional architecture. The presence of C—H⋯π(thio­phene) contacts in the crystal of 4 results in chain formation in the c-axis direction. The Hirshfeld surface analysis shows that for all four derivatives, the highest contribution to surface contacts arises from contacts in which H atoms are involved.




si

Synthesis, crystal structure and Hirshfeld surface analysis of 2-chloro-3-[(E)-(2-phenyl­hydrazinyl­idene)meth­yl]quinoline

A new quinoline-based hydrazone, C16H12ClN3, was synthesized by a condensation reaction of 2-chloro-3-formyl­quinoline with phenyl­hydrazine. The quinoline ring system is essentially planar (r.m.s. deviation = 0.012 Å), and forms a dihedral angle of 8.46 (10)° with the phenyl ring. The mol­ecule adopts an E configuration with respect to the central C=N bond. In the crystal, mol­ecules are linked by a C—H⋯π-phenyl inter­action, forming zigzag chains propagating along the [10overline{3}] direction. The N—H hydrogen atom does not participate in hydrogen bonding but is directed towards the phenyl ring of an adjacent mol­ecule, so linking the chains via weak N—H⋯π inter­actions to form of a three-dimensional structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (35.5%), C⋯H/H⋯C (33.7%), Cl⋯H/H⋯Cl (12.3%), N⋯H/H⋯N (9.5%) contacts.




si

Crystal structure, synthesis and thermal properties of tetra­kis­(4-benzoyl­pyridine-κN)bis­(iso­thio­cyanato-κN)iron(II)

The asymmetric unit of the title compound, [Fe(NCS)2(C12H9NO)4], consists of an FeII ion that is located on a centre of inversion, as well as two 4-benzoyl­pyridine ligands and one thio­cyanate anion in general positions. The FeII ions are coordinated by two N-terminal-bonded thio­cyanate anions and four 4-benzoyl­pyridine ligands into discrete complexes with a slightly distorted octa­hedral geometry. These complexes are further linked by weak C—H⋯O hydrogen bonds into chains running along the c-axis direction. Upon heating, this complex loses half of the 4-benzoyl­pyridine ligands and transforms into a compound with the composition Fe(NCS)2(4-benzoyl­pyridine)2, that might be isotypic to the corresponding MnII compound and for which the structure is unknown.




si

Structure and Hirshfeld surface analysis of the salt N,N,N-trimethyl-1-(4-vinyl­phen­yl)methanaminium 4-vinyl­benzene­sulfonate

In the title compound, the asymmetric unit comprises an N,N,N-trimethyl-1-(4-vinyl­phen­yl)methanaminium cation and a 4-vinyl­benzene­sulfonate anion, C12H18N+·C8H7O3S−. The salt has a polymerizable vinyl group attached to both the cation and the anion. The methanaminium and vinyl substituents on the benzene ring of the cation subtend angles of 86.6 (3) and 10.5 (9)° to the ring plane, while the anion is planar excluding the sulfonate O atoms. The vinyl substituent on the benzene ring of the cation is disordered over two sites with a refined occupancy ratio of 0.542 (11):0.458 (11). In the crystal, C—H⋯O hydrogen bonds dominate the packing and combine with a C—H⋯π(ring) contact to stack the cations and anions along the a-axis direction. Hirshfeld surface analysis of the salt and of the individual cation and anion components is also reported.




si

Crystal structure and Hirshfeld surface analysis of (2E)-3-(4-chloro-3-fluoro­phen­yl)-1-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one

The mol­ecular structure of the title compound, C17H14ClFO3, consists of a 4-chloro-3-fluoro­phenyl ring and a 3,4-di­meth­oxy­phenyl ring linked via a prop-2-en-1-one spacer. The mol­ecule has an E configuration about the C=C bond and the carbonyl group is syn with respect to the C=C bond. The F and H atoms at the meta positions of the 4-chloro-3-fluoro­phenyl ring are disordered over two orientations, with an occupancy ratio of 0.785 (3):0.215 (3). In the crystal, mol­ecules are linked via pairs of C—H⋯O inter­actions with an R22(14) ring motif, forming inversion dimers. The dimers are linked into a tape structure running along [10overline{1}] by a C—H⋯π inter­action. The inter­molecular contacts in the crystal were further analysed using Hirshfield surface analysis, which indicates that the most significant contacts are H⋯H (25.0%), followed by C⋯H/H⋯C (20.6%), O⋯H/H⋯O (15.6%), Cl⋯H/H⋯Cl (10.7%), F⋯H/H⋯F (10.4%), F⋯C/C⋯F (7.2%) and C⋯C (3.0%).




si

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of 5,5-diphenyl-1,3-bis­(prop-2-yn-1-yl)imidazolidine-2,4-dione

The title compound, C21H16N2O2, consists of an imidazolidine unit linked to two phenyl rings and two prop-2-yn-1-yl moieties. The imidazolidine ring is oriented at dihedral angles of 79.10 (5) and 82.61 (5)° with respect to the phenyl rings, while the dihedral angle between the two phenyl rings is 62.06 (5)°. In the crystal, inter­molecular C—HProp⋯OImdzln (Prop = prop-2-yn-1-yl and Imdzln = imidazolidine) hydrogen bonds link the mol­ecules into infinite chains along the b-axis direction. Two weak C—HPhen⋯π inter­actions are also observed. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (43.3%), H⋯C/C⋯H (37.8%) and H⋯O/O⋯H (18.0%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that the C—HProp⋯OImdzln hydrogen-bond energy in the crystal is −40.7 kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




si

Crystal structure and electrical resistance property of Rb0.21(H2O)yWS2

Rb0.21(H2O)yWS2, rubidium hydrate di­thio­tungstate, is a new quasi two-dimensional sulfide. Its crystal structure consists of ordered WS2 layers, separated by disordered Rb+ ions and water mol­ecules. All atomic sites are located on mirror planes. The WS2 layers are composed of edge-sharing [WS6] octa­hedra and extend parallel to (001). The presence of structural water was revealed by thermogravimetry, but the position and exact amount could not be determined in the present study. The temperature dependence of the electrical resistance indicates that Rb0.21(H2O)yWS2 is semiconducting between 80–300 K.




si

Synthesis, characterization, and crystal structure of aqua­bis­(4,4'-dimeth­oxy-2,2'-bi­pyridine)[μ-(2R,3R)-tartrato(4−)]dicopper(II) octa­hydrate

Typical electroless copper baths (ECBs), which are used to chemically deposit copper on printed circuit boards, consist of an aqueous alkali hydroxide solution, a copper(II) salt, formaldehyde as reducing agent, an l-(+)-tartrate as complexing agent, and a 2,2'-bi­pyridine derivative as stabilizer. Actual speciation and reactivity are, however, largely unknown. Herein, we report on the synthesis and crystal structure of aqua-1κO-bis­(4,4'-dimeth­oxy-2,2'-bi­pyri­dine)-1κ2N,N';2κ2N,N'-[μ-(2R,3R)-2,3-dioxidosuccinato-1κ2O1,O2:2κ2O3,O4]dicopper(II) octa­hydrate, [Cu2(C12H12N2O2)2(C4H2O6)(H2O)]·8H2O, from an ECB mock-up. The title compound crystallizes in the Sohncke group P21 with one chiral dinuclear complex and eight mol­ecules of hydrate water in the asymmetric unit. The expected retention of the tartrato ligand's absolute configuration was confirmed via determination of the absolute structure. The complex mol­ecules exhibit an ansa-like structure with two planar, nearly parallel bi­pyridine ligands, each bound to a copper atom that is connected to the other by a bridging tartrato `handle'. The complex and water mol­ecules give rise to a layered supra­molecular structure dominated by alternating π stacks and hydrogen bonds. The understanding of structures ex situ is a first step on the way to prolonged stability and improved coating behavior of ECBs.




si

Crystal structures and Hirshfeld surface analysis of [κ2-P,N-{(C6H5)2(C5H5N)P}Re(CO)3Br]·2CHCl3 and the product of its reaction with piperidine, [P-{(C6H5)2(C5H5N)P}(C5H11N)Re(CO)3Br]

The coordination of the ligands with respect to the central atom in the complex bromido­tricarbon­yl[diphen­yl(pyridin-2-yl)phosphane-κ2N,P]rhenium(I) chloro­form disolvate, [ReBr(C17H14NP)(CO)3]·2CHCl3 or [κ2-P,N-{(C6H5)2(C5H5N)P}Re(CO)3Br]·2CHCl3, (I·2CHCl3), is best described as a distorted octa­hedron with three carbonyls in a facial conformation, a bromide atom, and a biting P,N-di­phenyl­pyridyl­phosphine ligand. Hirshfeld surface analysis shows that C—Cl⋯H inter­actions contribute 26%, the distance of these inter­actions are between 2.895 and 3.213 Å. The reaction between I and piperidine (C5H11N) at 313 K in di­chloro­methane leads to the partial decoord­ination of the pyridyl­phosphine ligand, whose pyridyl group is replaced by a piperidine mol­ecule, and the complex bromido­tricarbon­yl[diphen­yl(pyridin-2-yl)phosphane-κP](piperidine-κN)rhenium(I), [ReBr(C5H11N)(C17H14NP)(CO)3] or [P-{(C6H5)2(C5H5N)P}(C5H11N)Re(CO)3Br] (II). The mol­ecule has an intra­molecular N—H⋯N hydrogen bond between the non-coordinated pyridyl nitro­gen atom and the amine hydrogen atom from piperidine with D⋯A = 2.992 (9) Å. Thermogravimetry shows that I·2CHCl3 losses 28% of its mass in a narrow range between 318 and 333 K, which is completely consistent with two solvating chloro­form mol­ecules very weakly bonded to I. The remaining I is stable at least to 573 K. In contrast, II seems to lose solvent and piperidine (12% of mass) between 427 and 463 K, while the additional 33% loss from this last temperature to 573 K corresponds to the release of 2-pyridyl­phosphine. The contribution to the scattering from highly disordered solvent mol­ecules in II was removed with the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9-18] in PLATON. The stated crystal data for Mr, μ etc. do not take this solvent into account.




si

Synthesis and crystal structure of calcium hydrogen phosphite, CaHPO3

The hydro­thermal synthesis and crystal structure of the simple inorganic compound CaHPO3, which crystallizes in the chiral space group P43212, are reported. The structure is built up from distorted CaO7 capped trigonal prisms and HPO3 pseudo pyramids, which share corners and edges to generate a three-dimensional network.




si

Syntheses, crystal structures, and comparisons of rare-earth oxyapatites Ca2RE8(SiO4)6O2 (RE = La, Nd, Sm, Eu, or Yb) and NaLa9(SiO4)6O2

Six different rare-earth oxyapatites, including Ca2RE8(SiO4)6O2 (RE = La, Nd, Sm, Eu, or Yb) and NaLa9(SiO4)6O2, were synthesized using solution-based processes followed by cold pressing and sinter­ing. The crystal structures of the synthesized oxyapatites were determined from powder X-ray diffraction (P-XRD) and their chemistries verified with electron probe microanalysis (EPMA). All the oxyapatites were isostructural within the hexa­gonal space group P63/m and showed similar unit-cell parameters. The isolated [SiO4]4− tetra­hedra in each crystal are linked by the cations at the 4f and 6h sites occupied by RE3+ and Ca2+ in Ca2RE8(SiO4)6O2 or La3+ and Na+ in NaLa9(SiO4)6O2. The lattice parameters, cell volumes, and densities of the synthesized oxyapatites fit well to the trendlines calculated from literature values.




si

Synthesis, detailed geometric analysis and bond-valence method evaluation of the strength of π-arene bonding of two isotypic cationic prehnitene tin(II) complexes: [{1,2,3,4-(CH3)4C6H2}2Sn2Cl2][MCl4]2 (M = Al and Ga)

From solutions of prehnitene and the ternary halides (SnCl)[MCl4] (M = Al, Ga) in chloro­benzene, the new cationic SnII–π-arene complexes catena-poly[[chlorido­aluminate(III)]-tri-μ-chlorido-4':1κ2Cl,1:2κ4Cl-[(η6-1,2,3,4-tetra­meth­yl­benzene)­tin(II)]-di-μ-chlorido-2:3κ4Cl-[(η6-1,2,3,4-tetra­methyl­benzene)­tin(II)]-di-μ-chlorido-3:4κ4Cl-[chlorido­aluminate(III)]-μ-chlorido-4:1'κ2Cl], [Al2Sn2Cl10(C10H14)2]n, (1) and catena-poly[[chlorido­gallate(III)]-tri-μ-chlor­ido-4':1κ2Cl,1:2κ4Cl-[(η6-1,2,3,4-tetra­methyl­benzene)­tin(II)]-di-μ-chlorido-2:3κ4Cl-[(η6-1,2,3,4-tetra­methyl­benzene)­tin(II)]-di-μ-chlorido-3:4κ4Cl-[chlor­ido­gallate(III)]-μ-chlorido-4:1'κ2Cl], [Ga2Sn2Cl10(C10H14)2]n, (2), were isolated. In these first main-group metal–prehnitene complexes, the distorted η6 arene π-bonding to the tin atoms of the Sn2Cl22+ moieties in the centre of [{1,2,3,4-(CH3)4C6H2}2Sn2Cl2][MCl4]2 repeating units (site symmetry overline{1}) is characterized by: (i) a significant ring slippage of ca 0.4 Å indicated by the dispersion of Sn—C distances [1: 2.881 (2)–3.216 (2) Å; 2: 2.891 (3)–3.214 (3) Å]; (ii) the non-methyl-substituted arene C atoms positioned closest to the SnII central atom; (iii) a pronounced tilt of the plane of the arene ligand against the plane of the central (Sn2Cl2)2+ four-membered ring species [1: 15.59 (11)°, 2: 15.69 (9)°]; (iv) metal–arene bonding of medium strength as illustrated by application of the bond-valence method in an indirect manner, defining the π-arene bonding inter­action of the SnII central atoms as s(SnII—arene) = 2 − Σs(SnII—Cl), that gives s(SnII—arene) = 0.37 and 0.38 valence units for the aluminate and the gallate, respectively, indicating that comparatively strong main-group metal–arene bonding is present and in line with the expectation that [AlCl4]− is the slightly weaker coordinating anion as compared to [GaCl4]−.




si

Synthesis and crystal structure of a new hybrid organic–inorganic material containing neutral mol­ecules, cations and hepta­molybdate anions

The title compound, hexa­kis­(2-methyl-1H-imidazol-3-ium) hepta­molybdate 2-methyl-1H-imidazole disolvate dihydrate, (C4H7N2)6[Mo7O24]·2C4H6N2·2H2O, was prepared from 2-methyl­imidazole and ammonium hepta­molybdate tetra­hydrate in acid solution. The [Mo7O24]6− hepta­molybdate cluster anion is accompanied by six protonated (C4H7N2)+ 2-methyl­imidazolium cations, two neutral C4H6N2 2-methyl­imidazole mol­ecules and two water mol­ecules of crystallization. The cluster consists of seven distorted MoO6 octa­hedra sharing edges or vertices. In the crystal, the components are linked by N—H⋯N, N—H⋯O, O—H⋯O, N—H⋯(O,O) and O—H⋯(O,O) hydrogen bonds, generating a three-dimensional network. Weak C—H⋯O inter­actions consolidate the packing.




si

Crystal structure and Hirshfeld surface analysis of N-(2-chloro­phenyl­carbamo­thio­yl)-4-fluoro­benzamide and N-(4-bromo­phenyl­carbamo­thio­yl)-4-fluoro­benzamide

The title compounds, C14H10ClFN2OS (1) and C14H10BrFN2OS (2), were synthesized by two-step reactions. The dihedral angles between the aromatic rings are 31.99 (3) and 9.17 (5)° for 1 and 2, respectively. Compound 1 features an intra­molecular bifurcated N—H⋯(O,Cl) link due to the presence of the ortho-Cl atom on the benzene ring, whereas 2 features an intra­molecular N—H⋯O hydrogen bond. In the crystal of 1, inversion dimers linked by pairs of N—H⋯S hydrogen bonds generate R22(8) loops. The extended structure of 2 features the same motif but an additional weak C—H⋯S inter­action links the inversion dimers into [100] double columns. Hirshfeld surface analyses indicate that the most important contributors towards the crystal packing are H⋯H (26.6%), S⋯H/H.·S (13.8%) and Cl⋯H/H⋯Cl (9.5%) contacts for 1 and H⋯H (19.7%), C⋯H/H⋯C (14.8%) and Br⋯H/H⋯Br (12.4%) contacts for 2.




si

Crystal structure, spectroscopic characterization and Hirshfeld surface analysis of trans-di­aqua­[2,5-bis­(pyridin-4-yl)-1,3,4-oxa­diazole]di­thio­cyanato­nickel(II)

The reaction of 2,5-bis­(pyridin-4-yl)-1,3,4-oxa­diazole (4-pox) and thio­cyanate ions, used as co-ligand with nickel salt NiCl2·6H2O, produced the title complex, [Ni(NCS)2(C12H8N4O)2(H2O)2]. The NiII atom is located on an inversion centre and is octa­hedrally coordinated by four N atoms from two ligands and two pseudohalide ions, forming the equatorial plane. The axial positions are occupied by two O atoms of coordinated water mol­ecules. In the crystal, the mol­ecules are linked into a three-dimensional network through strong O—H⋯N hydrogen bonds. Hirshfeld surface analysis was used to investigate the inter­molecular inter­actions in the crystal packing.




si

Crystal structure and Hirshfeld surface analysis of di­iodido­{N'-[(E)-(phen­yl)(pyridin-2-yl-κN)methylidene]pyridine-2-carbohydrazide-κ2N',O}cadmium(II)

In each of the two independent mol­ecules in the asymmetric unit of the title compound, [CdI2(C18H14N4O)], the N,O,N'-tridentate N'-[(E)-(phen­yl)(pyridin-2-yl-κN)methyl­idene]pyridine-2-carbohydrazide ligand and two iodide anions form an I2N2O penta­coordination sphere, with a distorted square-pyramidal geometry, with an I atom in the apical position. Both mol­ecules feature an intra­molecular N—H⋯N hydrogen bond. In the crystal, weak aromatic π–π stacking inter­actions [centroid–centroid separation = 3.830 (2) Å] link the mol­ecules into dimers.




si

Crystal structure analysis of the biologically active drug mol­ecule riluzole and riluzolium chloride

This study is an investigation into the crystal structure of the biologically active drug mol­ecule riluzole [RZ, 6-(tri­fluoro­meth­oxy)-1,3-benzo­thia­zol-2-amine], C8H5F3N2OS, and its derivative, the riluzolium chloride salt [RZHCl, 2-amino-6-(tri­fluoro­meth­oxy)-1,3-benzo­thia­zol-3-ium chloride], C8H6F3N2OS+·Cl−. In spite of repeated efforts to crystallize the drug, its crystal structure has not been reported to date, hence the current study provides a method for obtaining crystals of both riluzole and its corresponding salt, riluzolium hydro­chloride. The salt was obtained by grinding HCl with the drug and crystallizing the obtained solid from di­chloro­methane. The crystals of riluzole were obtained in the presence of l-glutamic acid and d-glutamic acid in separate experiments. In the crystal structure of RZHCl, the –OCF3 moiety is perpendicular to the mol­ecular plane containing the riluzolium ion, as can be seen by the torsion angle of 107.4 (3)°. In the case of riluzole, the torsion angles of the four different mol­ecules in the asymmetric unit show that in three cases the tri­fluoro­meth­oxy group is perpendicular to the riluzole mol­ecular plane and only in one mol­ecule does the –OCF3 group lie in the same mol­ecular plane. The crystal structure of riluzole primarily consists of strong N—H⋯N hydrogen bonds along with weak C—H⋯F, C—H⋯S, F⋯F, C⋯C and C⋯S inter­actions, while that of its salt is stabilized by strong [N—H]+⋯Cl− and weak C—H⋯Cl−, N—H⋯S, C—H⋯F, C⋯C, S⋯N and S⋯Cl− inter­actions.




si

Crystal structures and Hirshfeld surface analysis of a series of 4-O-aryl­perfluoro­pyridines

Five new crystal structures of perfluoro­pyridine substituted in the 4-position with phen­oxy, 4-bromo­phen­oxy, naphthalen-2-yl­oxy, 6-bromo­naphthalen-2-yl­oxy, and 4,4'-biphen­oxy are reported, viz. 2,3,5,6-tetra­fluoro-4-phen­oxy­pyridine, C11H5F4NO (I), 4-(4-bromo­phen­oxy)-2,3,5,6-tetra­fluoro­pyridine, C11H4BrF4NO (II), 2,3,5,6-tetra­fluoro-4-[(naphthalen-2-yl)­oxy]pyridine, C15H7F4NO (III), 4-[(6-bromo­naphthalen-2-yl)­oxy]-2,3,5,6-tetra­fluoropyridine, C15H6BrF4NO (IV), and 2,2'-bis­[(perfluoro­pyridin-4-yl)­oxy]-1,1'-biphenyl, C22H8F8N2O2 (V). The dihedral angles between the aromatic ring systems in I–IV are 78.74 (8), 56.35 (8), 74.30 (7), and 64.34 (19)°, respectively. The complete mol­ecule of V is generated by a crystallographic twofold axis: the dihedral angle between the pyridine ring and adjacent phenyl ring is 80.89 (5)° and the equivalent angle between the biphenyl rings is 27.30 (5)°. In each crystal, the packing is driven by C—H⋯F inter­actions, along with a variety of C—F⋯π, C—H⋯π, C—Br⋯N, C—H⋯N, and C—Br⋯π contacts. Hirshfeld surface analysis was conducted to aid in the visualization of these various influences on the packing.




si

Crystal structure and Hirshfeld surface analysis of 2-[(2-oxo-2H-chromen-4-yl)­oxy]acetic acid dimethyl sulfoxide monosolvate

The title compound, C11H8O5·(CH3)2SO, is a new coumarin derivative. The asymmetric unit contains two coumarin mol­ecules (A and B) and two di­methyl­sulfoxide solvent mol­ecules (A and B). The dihedral angle between the pyran and benzene rings in the chromene moiety is 3.56 (2)° for mol­ecule A and 1.83 (2)° for mol­ecule B. In mol­ecule A, the dimethyl sulfoxide sulfur atom is disordered over two positions with a refined occupancy ratio of 0.782 (5):0.218 (5). In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains running along the c-axis direction. The chains are linked by C—H⋯O hydrogen bonds, forming layers parallel to the ac plane. In addition, there are also C—H⋯π and π–π inter­actions present within the layers. The inter­molecular contacts in the crystal have been analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots, which indicate that the most important contributions to the packing are from H⋯H (33.9%) and O⋯H/H⋯O (41.2%) contacts.




si

N,N'-Bis(pyridin-4-ylmeth­yl)oxalamide benzene monosolvate: crystal structure, Hirshfeld surface analysis and computational study

The asymmetric unit of the title 1:1 solvate, C14H14N4O2·C6H6 [systematic name of the oxalamide mol­ecule: N,N'-bis­(pyridin-4-ylmeth­yl)ethanedi­amide], comprises a half mol­ecule of each constituent as each is disposed about a centre of inversion. In the oxalamide mol­ecule, the central C2N2O2 atoms are planar (r.m.s. deviation = 0.0006 Å). An intra­molecular amide-N—H⋯O(amide) hydrogen bond is evident, which gives rise to an S(5) loop. Overall, the mol­ecule adopts an anti­periplanar disposition of the pyridyl rings, and an orthogonal relationship is evident between the central plane and each terminal pyridyl ring [dihedral angle = 86.89 (3)°]. In the crystal, supra­molecular layers parallel to (10overline{2}) are generated owing the formation of amide-N—H⋯N(pyrid­yl) hydrogen bonds. The layers stack encompassing benzene mol­ecules which provide the links between layers via methyl­ene-C—H⋯π(benzene) and benzene-C—H⋯π(pyrid­yl) inter­actions. The specified contacts are indicated in an analysis of the calculated Hirshfeld surfaces. The energy of stabilization provided by the conventional hydrogen bonding (approximately 40 kJ mol−1; electrostatic forces) is just over double that by the C—H⋯π contacts (dispersion forces).




si

Crystal structure and Hirshfeld surface analysis of (E)-4-{[2,2-di­chloro-1-(4-meth­oxy­phen­yl)ethen­yl]diazen­yl}benzo­nitrile

In the title compound, C16H11Cl2N3O, the 4-meth­oxy-substituted benzene ring makes a dihedral angle of 41.86 (9)° with the benzene ring of the benzo­nitrile group. In the crystal, mol­ecules are linked into layers parallel to (020) by C—H⋯O contacts and face-to-face π–π stacking inter­actions [centroid–centroid distances = 3.9116 (14) and 3.9118 (14) Å] between symmetry-related aromatic rings along the a-axis direction. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from Cl⋯H/H⋯Cl (22.8%), H⋯H (21.4%), N⋯H/H⋯N (16.1%), C⋯H/H⋯C (14.7%) and C⋯C (9.1%) inter­actions.




si

Bis(mefloquinium) butane­dioate ethanol monosolvate: crystal structure and Hirshfeld surface analysis

The asymmetric unit of the centrosymmetric title salt solvate, 2C17H17F6N2O+· C4H4O42−·CH3CH2OH, (systematic name: 2-{[2,8-bis­(tri­fluoro­meth­yl)quinolin-4-yl](hy­droxy)meth­yl}piperidin-1-ium butane­dioate ethanol monosolvate) comprises two independent cations, with almost superimposable conformations and each approximating the shape of the letter L, a butane­dioate dianion with an all-trans conformation and an ethanol solvent mol­ecule. In the crystal, supra­molecular chains along the a-axis direction are sustained by charge-assisted hy­droxy-O—H⋯O(carboxyl­ate) and ammonium-N—H⋯O(carboxyl­ate) hydrogen bonds. These are connected into a layer via C—F⋯π(pyrid­yl) contacts and π–π stacking inter­actions between quinolinyl-C6 and –NC5 rings of the independent cations of the asymmetric unit [inter-centroid separations = 3.6784 (17) and 3.6866 (17) Å]. Layers stack along the c-axis direction with no directional inter­actions between them. The analysis of the calculated Hirshfeld surface reveals the significance of the fluorine atoms in surface contacts. Thus, by far the greatest contribution to the surface contacts, i.e. 41.2%, are of the type F⋯H/H⋯F and many of these occur in the inter-layer region. However, these contacts occur at separations beyond the sum of the van der Waals radii for these atoms. It is noted that H⋯H contacts contribute 29.8% to the overall surface, with smaller contributions from O⋯H/H⋯O (14.0%) and F⋯F (5.7%) contacts.




si

Crystal structure, DFT study and Hirshfeld surface analysis of 1-nonyl-2,3-di­hydro-1H-indole-2,3-dione

In the title mol­ecule, C17H23NO2, the di­hydro­indole portion is planar (r.m.s. deviation = 0.0157 Å) and the nonyl substituent is in an `extended' conformation. In the crystal, the nonyl chains inter­calate and the di­hydro­indole­dione units are associated through C—H⋯O hydrogen bonds to form micellar blocks. Based on the Hirshfeld surface analysis, the most important inter­molecular inter­action is the H⋯H inter­action.




si

Crystal structure of poly[[[μ4-3-(1,2,4-triazol-4-yl)adamantane-1-carboxyl­ato-κ5N1:N2:O1:O1,O1']silver(I)] dihydrate]

The heterobifunctional organic ligand, 3-(1,2,4-triazol-4-yl)adamantane-1-carboxyl­ate (tr-ad-COO−), was employed for the synthesis of the title silver(I) coordination polymer, {[Ag(C13H16N3O2)]·2H2O}n, crystallizing in the rare ortho­rhom­bic C2221 space group. Alternation of the double μ2-1,2,4-triazole and μ2-η2:η1-COO− (chelating, bridging mode) bridges between AgI cations supports the formation of sinusoidal coordination chains. The AgI centers possess a distorted {N2O3} square-pyramidal arrangement with τ5 = 0.30. The angular organic linkers connect the chains into a tetra­gonal framework with small channels along the c-axis direction occupied by water mol­ecules of crystallization, which are inter­linked via O—H⋯O hydrogen bonds with carboxyl­ate groups, leading to right- and left-handed helical dispositions.




si

Crystal structure, Hirshfeld surface analysis and corrosion inhibition study of 3,6-bis­(pyridin-2-yl)-4-{[(3aS,5S,5aR,8aR,8bS)-2,2,7,7-tetra­methyl­tetra­hydro-5H-bis­[1,3]dioxolo[4,5-b:4',5'-d]pyran-5-yl)meth­oxy]meth­

In the title compound, C27H30N4O6·H2O, the two dioxolo rings are in envelope conformations, while the pyran ring is in a twisted-boat conformation. The pyradizine ring is oriented at dihedral angles of 9.23 (6) and 12.98 (9)° with respect to the pyridine rings, while the dihedral angle between the two pyridine rings is 13.45 (10)°. In the crystal, O—Hwater⋯Opyran, O—Hwater⋯Ometh­oxy­meth­yl and O—Hwater⋯Npyridazine hydrogen bonds link the mol­ecules into chains along [010]. In addition, weak C—Hdioxolo⋯Odioxolo hydrogen bonds and a weak C—Hmeth­oxy­meth­yl⋯π inter­action complete the three-dimensional structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (55.7%), H⋯C/C⋯H (14.6%), H⋯O/O⋯H (14.5%) and H⋯N/N⋯H (9.6%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Electrochemical measurements are also reported.




si

Crystal structure and Hirshfeld surface analysis of (E)-3-[(4-chloro­benzyl­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide

The title salt, C16H15ClN3S+·Br−, is isotypic with (E)-3-[(4-fluoro­benzyl­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide [Khalilov et al. (2019). Acta Cryst. E75, 662–666]. In the cation of the title salt, the atoms of the phenyl ring attached to the central thia­zolidine ring and the atom joining the thia­zolidine ring to the benzene ring are disordered over two sets of sites with occupancies of 0.570 (3) and 0.430 (3). The major and minor components of the disordered thia­zolidine ring adopt slightly distorted envelope conformations, with the C atom bearing the phenyl ring as the flap atom. In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br contacts into chains parallel to the a axis. Furthermore, not existing in the earlier report of (E)-3-[(4-fluoro­benzyl­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide, C—H⋯π inter­actions and π–π stacking inter­actions [centroid-to-centroid distance = 3.897 (2) Å] between the major components of the disordered phenyl ring contribute to the stabilization of the mol­ecular packing. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions for the crystal packing are from H⋯H (30.5%), Br⋯H/H⋯Br (21.2%), C⋯H/H⋯C (19.2%), Cl⋯H/H⋯Cl (13.0%) and S⋯H/H⋯S (5.0%) inter­actions.




si

(3,5-Di­methyl­adamantan-1-yl)ammonium methane­sulfonate (memanti­nium mesylate): synthesis, structure and solid-state properties

The asymmetric unit of the title compound, C12H22N+·CH3O3S−, consists of three (3,5-di­methyl­adamantan-1-yl)ammonium cations, C12H22N+, and three methane­sulfonate anions, CH3O3S−. In the crystal, the cations and anions associate via N—H⋯O hydrogen bonds into layers, parallel to the (001) plane, which include large supra­molecular hydrogen-bonded rings.




si

Crystal structure and Hirshfeld surface analysis of 2,5-di­bromo­terephthalic acid ethyl­ene glycol monosolvate

The title compound, C8H4Br2O4·C2H6O2, crystallizes with one-half of a 2,5-di­bromo­terephthalic acid (H2Br2tp) mol­ecule and one-half of an ethyl­ene glycol (EG) mol­ecule in the the asymmetric unit. The whole mol­ecules are generated by application of inversion symmetry. The H2Br2tp mol­ecule is not planar, with the di­bromo­benzene ring system inclined by a dihedral angle of 18.62 (3)° to the carb­oxy­lic group. In the crystal, the H2Br2tp and EG mol­ecules are linked into sheets propagating parallel to (overline{1}01) through O—H⋯O hydrogen bonds, thereby forming R44 (12) and R44 (28) graph-set motifs. Br⋯O and weak π–π stacking inter­actions are also observed. Hirshfeld surface analysis was used to confirm the existence of these inter­actions.




si

2-Methyl-4-(4-nitro­phen­yl)but-3-yn-2-ol: crystal structure, Hirshfeld surface analysis and computational chemistry study

The di-substituted acetyl­ene residue in the title compound, C11H11NO3, is capped at either end by di-methyl­hydroxy and 4-nitro­benzene groups; the nitro substituent is close to co-planar with the ring to which it is attached [dihedral angle = 9.4 (3)°]. The most prominent feature of the mol­ecular packing is the formation, via hy­droxy-O—H⋯O(hy­droxy) hydrogen bonds, of hexa­meric clusters about a site of symmetry overline{3}. The aggregates are sustained by 12-membered {⋯OH}6 synthons and have the shape of a flattened chair. The clusters are connected into a three-dimensional architecture by benzene-C—H⋯O(nitro) inter­actions, involving both nitro-O atoms. The aforementioned inter­actions are readily identified in the calculated Hirshfeld surface. Computational chemistry indicates there is a significant energy, primarily electrostatic in nature, associated with the hy­droxy-O—H⋯O(hy­droxy) hydrogen bonds. Dispersion forces are more important in the other identified but, weaker inter­molecular contacts.




si

Six 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines: similar mol­ecular structures but different patterns of supra­molecular assembly

Six new 1-aroyl-4-(4-meth­oxy­phen­yl)piperazines have been prepared, using coupling reactions between benzoic acids and N-(4-meth­oxy­phen­yl)piperazine. There are no significant hydrogen bonds in the structure of 1-benzoyl-4-(4-meth­oxy­phen­yl)piperazine, C18H20N2O2, (I). The mol­ecules of 1-(2-fluoro­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19FN2O2, (II), are linked by two C—H⋯O hydrogen bonds to form chains of rings, which are linked into sheets by an aromatic π–π stacking inter­action. 1-(2-Chloro­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19ClN2O2, (III), 1-(2-bromo­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H19BrN2O2, (IV), and 1-(2-iodo­benzo­yl)-4-(4-meth­oxyphen­yl)piperazine, C18H19IN2O2, (V), are isomorphous, but in (III) the aroyl ring is disordered over two sets of atomic sites having occupancies of 0.942 (2) and 0.058 (2). In each of (III)–(V), a combination of two C—H⋯π(arene) hydrogen bonds links the mol­ecules into sheets. A single O—H⋯O hydrogen bond links the mol­ecules of 1-(2-hy­droxy­benzo­yl)-4-(4-meth­oxy­phen­yl)piperazine, C18H20N2O3, (VI), into simple chains. Comparisons are made with the structures of some related compounds.