si

Crystal structure and Hirshfeld surface analysis of (E)-6-(4-hy­droxy-3-meth­oxy­styr­yl)-4,5-di­hydro­pyridazin-3(2H)-one

In the title com­pound, C13H14N2O3, the dihydropyridazine ring (r.m.s. deviation = 0.166 Å) has a screw-boat conformation. The dihedral angle between its mean plane and the benzene ring is 0.77 (12)°. In the crystal, inter­molecular O—H⋯O hydrogen bonds generate C(5) chains and N—H⋯O hydrogen bonds produce R22(8) motifs. These types of inter­actions lead to the formation of layers parallel to (12overline{1}). The three-dimensional network is achieved by C—H⋯O inter­actions, including R24(8) motifs. Inter­molecular inter­actions were additionally investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots. The most significant contributions to the crystal packing are by H⋯H (43.3%), H⋯C/C⋯H (19.3%), H⋯O/H⋯O (22.6%), C⋯N/N⋯C (3.0%) and H⋯N/N⋯H (5.8%) contacts. C—H⋯π inter­actions and aromatic π–π stacking inter­actions are not observed.




si

Crystal structure, Hirshfeld surface analysis and DFT studies of ethyl 2-{4-[(2-eth­oxy-2-oxoeth­yl)(phen­yl)carbamo­yl]-2-oxo-1,2-di­hydro­quinolin-1-yl}acetate

The title com­pound, C24H24N2O6, consists of ethyl 2-(1,2,3,4-tetra­hydro-2-oxo­quinolin-1-yl)acetate and 4-[(2-eth­oxy-2-oxoeth­yl)(phen­yl)carbomoyl] units, where the oxo­quinoline unit is almost planar and the acetate substituent is nearly perpendicular to its mean plane. In the crystal, C—HOxqn⋯OEthx and C—HPh­yl⋯OCarbx (Oxqn = oxoquinolin, Ethx = eth­oxy, Phyl = phenyl and Carbx = carboxyl­ate) weak hydrogen bonds link the mol­ecules into a three-dimensional network sturucture. A π–π inter­action between the constituent rings of the oxo­quinoline unit, with a centroid–centroid distance of 3.675 (1) Å may further stabilize the structure. Both terminal ethyl groups are disordered over two sets of sites. The ratios of the refined occupanies are 0.821 (8):0.179 (8) and 0.651 (18):0.349 (18). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (53.9%), H⋯O/O⋯H (28.5%) and H⋯C/C⋯H (11.8%) inter­actions. Weak inter­molecular hydrogen-bond inter­actions and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Density functional theory (DFT) geometric optimized structures at the B3LYP/6-311G(d,p) level are com­pared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO mol­ecular orbital behaviour was elucidated to determine the energy gap.




si

Crystal structure and Hirshfeld surface analysis of 2-(4-nitro­phen­yl)-2-oxoethyl picolinate

2-(4-Nitro­phen­yl)-2-oxoethyl picolinate, C14H10N2O5, was synthesized under mild conditions. The chemical and mol­ecular structures were confirmed by single-crystal X-ray diffraction analysis. The mol­ecules are linked by inversion into centrosymmetric dimers via weak inter­molecular C—H⋯O inter­actions, forming R22(10) ring motifs, and further strengthened by weak π–π inter­actions. Hirshfeld surface analyses, the dnorm surfaces, electrostatic potential and two-dimensional fingerprint (FP) plots were used to verify the contributions of the different inter­molecular inter­actions within the supra­molecular structure. The shape-index surface shows that two sides of the mol­ecules are involved with the same contacts in neighbouring mol­ecules and curvedness plots show flat surface patches that are characteristic of planar stacking.




si

Synthesis and crystal structure of (E)-2-({2-[aza­niumyl­idene(methyl­sulfan­yl)meth­yl]hydrazinyl­idene}meth­yl)benzene-1,4-diol hydrogen sulfate

The title mol­ecular salt, C9H12N3O2S+·HSO4−, was obtained through the protonation of the azomethine N atom in a sulfuric acid medium. The crystal com­prises two entities, a thio­semicarbazide cation and a hydrogen sulfate anion. The cation is essentially planar and is further stabilized by a strong intra­molecular O—H⋯N hydrogen bond. In the crystal, a three-dimensional network is established through O—H⋯O and N—H⋯O hydrogen bonds. A weak intermolecular C—H⋯O hydrogen bond is also observed. The hydrogen sulfate anion exhibits disorder over two sets of sites and was modelled with refined occupancies of 0.501 (6) and 0.499 (6).




si

Crystal structure and Hirshfeld surface analysis of 2,2'-{(1E,1'E)-[ethane-1,2-diylbis(aza­nylyl­idene)]bis­(methanylyl­idene)}bis­[4-(tri­fluoro­meth­oxy)phenol]copper(II) hydro­quinone hemisolvate

In the title com­plex, [Cu(C18H12F6N2O4)]·0.5C6H6O2, the CuII ion has a square-planar coordination geometry, being ligated by two N and two O atoms of the tetra­dentate open-chain Schiff base ligand 6,6'-{(1E,1'E)-[ethane-1,2-diylbis(aza­nylyl­idene)]bis­(methanylyl­idene)}bis­[2-(tri­fluoro­meth­oxy)phenol]. The crystal packing is stabilized by intra­molecular O—H⋯O and inter­molecular C—H⋯F, C—H⋯O and C—H⋯π hydrogen bonds. In addition, weak π–π inter­actions form a three-dimensional structure. Hirshfeld surface analysis and two-dimensional fingerprint plots were performed and created to analyze the inter­molecular inter­actions present in the crystal, indicating that the most important contributions for the crystal packing are from F⋯H/H⋯F (25.7%), H⋯H (23.5%) and C⋯H/H⋯C (12.6%) inter­actions.




si

Crystal structure and Hirshfeld surface analysis of 2-(4-nitro­phen­yl)-2-oxoethyl 2-chloro­benzoate

The title compound, C15H10ClNO5, is relatively planar with the two aromatic rings being inclined to each other by 3.56 (11)°. The central —C(=O)—C–O—C(=O)— bridge is slightly twisted, with a C—C—O—C torsion angle of 164.95 (16)°. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯Cl hydrogen bonds, forming layers parallel to the (101) plane. The layers are linked by a further C—H⋯O hydrogen bond, forming a three-dimensional supra­molecular structure. There are a number of offset π–π inter­actions present between the layers [inter­centroid distances vary from 3.8264 (15) to 3.9775 (14) Å]. Hirshfeld surface analyses, the dnorm surfaces, electrostatic potential and two-dimensional fingerprint plots were examined to verify the contributions of the different inter­molecular contacts within the supra­molecular structure. The shape-index surface shows that two sides of the mol­ecule are involved in the same contacts with neighbouring mol­ecules, and the curvedness plot shows flat surface patches that are characteristic of planar stacking.




si

Synthesis and crystal structure of (E)-1,2-bis­[2-(methyl­sulfan­yl)phen­yl]diazene

The title compound, C14H14N2S2, was obtained by transmetallation of 2,2'-bis­(tri­methyl­stann­yl)azo­benzene with methyl lithium, and subsequent quenching with dimethyl di­sulfide. The asymmetric unit comprises two half-mol­ecules, the other halves being completed by inversion symmetry at the midpoint of the azo group. The two mol­ecules show only slight differences with respect to N=N, S—N and aromatic C=C bonds or angles. Hirshfeld surface analysis reveals that except for one weak H⋯S inter­action, inter­molecular inter­actions are dominated by van der Waals forces only.




si

Crystal structures of two coordination isomers of copper(II) 4-sulfo­benzoic acid hexa­hydrate and two mixed silver/potassium 4-sulfo­benzoic acid salts

A reaction of copper(II) carbonate and potassium 4-sulfo­benzoic acid in water acidified with hydro­chloric acid yielded two crystalline products. Tetra­aqua­bis­(4-carb­oxy­benzene­sulfonato)­copper(II) dihydrate, [Cu(O3SC6H4CO2H)2(H2O)4]·2H2O, (I), crystallizes in the triclinic space group Poverline{1} with the Cu2+ ions located on centers of inversion. Each copper ion is coordinated to four water mol­ecules in a square plane with two sulfonate O atoms in the apical positions of a Jahn–Teller-distorted octa­hedron. The carboxyl­ate group is protonated and not involved in coordination to the metal ions. The complexes pack so as to create a layered structure with alternating inorganic and organic domains. The packing is reinforced by several O—H⋯O hydrogen bonds involving coordinated and non-coordinated water mol­ecules, the carb­oxy­lic acid group and the sulfonate group. Hexa­aqua­copper(II) 4-carb­oxy­benzene­sulfonate, [Cu(H2O)6](O3SC6H4CO2H)2, (II), also crystallizes in the triclinic space group Poverline{1} with Jahn–Teller-distorted octa­hedral copper(II) aqua complexes on the centers of inversion. As in (I), the carboxyl­ate group on the anion is protonated and the structure consists of alternating layers of inorganic cations and organic anions linked by O—H⋯O hydrogen bonds. A reaction of silver nitrate and potassium 4-sulfo­benzoic acid in water also resulted in two distinct products that have been structurally characterized. An anhydrous silver potassium 4-carb­oxy­benzene­sulfonate salt, [Ag0.69K0.31](O3SC6H4CO2H), (III), crystallizes in the monoclinic space group C2/c. There are two independent metal sites, one fully occupied by silver ions and the other showing a 62% K+/38% Ag+ (fixed) ratio, refined in two slightly different positions. The coordination environments of the metal ions are composed primarily of sulfonate O atoms, with some participation by the non-protonated carboxyl­ate O atoms in the disordered site. As in the copper compounds, the cations and anions cleanly segregate into alternating layers. A hydrated mixed silver potassium 4-carb­oxy­benzene­sulfonate salt dihydrate, [Ag0.20K0.80](O3SC6H4CO2H)·2H2O, (IV), crystallizes in the monoclinic space group P21/c with the Ag+ and K+ ions sharing one unique metal site coordinated by two water mol­ecules and six sulfonate O atoms. The packing in (IV) follows the dominant motif of alternating inorganic and organic layers. The protonated carboxyl­ate groups do not inter­act with the cations directly, but do participate in hydrogen bonds with the coordinated water mol­ecules. (IV) is isostructural with pure potassium 4-sulfo­benzoic acid dihydrate.




si

Crystal structure and Hirshfeld surface analysis of poly[tris­(μ4-benzene-1,4-di­carboxyl­ato)tetra­kis­(di­methyl­formamide)­trinickel(II)]: a two-dimensional coordination network

The crystal structure of the title compound, [Ni3(C8H4O4)3(C3H7NO)4], is a two-dimensional coordination network formed by trinuclear linear Ni3(tp)3(DMF)4 units (tp = terephthalate = benzene-1,4-di­carboxyl­ate and DMF = di­methyl­formamide) displaying a characteristic coordination mode of acetate groups in polynuclear metal–organic compounds. Individual trinuclear units are connected through tp anions in a triangular network that forms layers. One of the DMF ligands points outwards and provides inter­actions with equivalent planes above and below, leaving the second ligand in a structural void much larger than the DMF mol­ecule, which shows positional disorder. Parallel planes are connected mainly through weak C—H⋯O, H⋯H and H⋯C inter­actions between DMF mol­ecules, as shown by Hirshfeld surface analysis.




si

(μ-Di-tert-butyl­silanediolato)bis­[bis­(η5-cyclo­penta­dien­yl)methyl­zirconium]

The reaction of t-Bu2Si(OH)2 with two equivalents of Cp2Zr(CH3)2 produces the title t-Bu2SiO2-siloxide bridged dimer, [Zr2(CH3)2(C5H5)4(C8H18O2Si)] or [Cp2Zr(CH3)]2[μ-t-Bu2SiO2] (1), where one methyl group is retained per zirconium atom. The same product is obtained at room temperature even when equimolar ratios of the silanediol and Cp2Zr(CH3)2 are used. Attempts to thermally eliminate methane and produce a bridging methyl­ene complex resulted in decomposition. The crystal structure of 1 displays typical Zr—CH3 and Zr—O distances but the Si—O distance [1.628 (2) Å] and O—Si—O angle [110.86 (15)°] are among the largest observed in this family of compounds suggesting steric crowding between the t-Bu substituents of the silicon atom and the cyclo­penta­dienyl groups. The silicon atom lies on a crystallographic twofold axis and both Cp rings are disordered over two orientations of equal occupancy.




si

Synthesis, crystal structure and characterizations of di-μ-cyanido-1:2κ2N:C;2:3κ2C:N-bis­(4,7,13,16,21,24-hexa­oxa-1,10-di­aza­bicyclo­[8.8.8]hexacosa­ne)-1κ8N1,N10,O4,O7,O13,O16,O21,O24;3κ8N1,N10,O4,O7,O13,O16,O21,O24-[5,10,

The title compound, [Fe(C44H24N8Cl4)(CN)2][K2(C18H36N2O6)2]·2C4H8O was synthesized and characterized by single-crystal X-ray diffraction as well as FTIR and UV–vis spectroscopy. The central FeII ion is coordinated by four pyrrole N atoms of the porphyrin core and two C atoms of the cyano groups in a slightly distorted octa­hedral coordination environment. The complex mol­ecule crystallizes with two tetra­hydro­furan solvent mol­ecules, one of which was refined as disordered over two sets of sites with refined occupancies of 0.619 (5) and 0.381 (5). It has a distorted porphyrin core with mean absolute core-atom displacements Ca, Cb, Cm and Cav of 0.32 (3), 0.22 (3), 0.56 (2) and 0.37 (14) Å, respectively. The axial Fe—Ccyano bond lengths are 1.991 (2) and 1.988 (2) Å. The average Fe—Np (Np is a porphyrin N atom) bond length is 1.964 (10) Å. One of the O atoms and several C atoms of the 222 moiety [222 = 4,7,13,16,21,24-hexa­oxa-1,10-di­aza­bicyclo­[8.8.8]hexa­cosa­ne] were refined as disordered over two sets of sites with occupancy ratios of 0.739 (6):0.261 (6) and 0.832 (4):0.168 (4). Additional solvent mol­ecules were found to be highly disordered and their contribution to the scattering was removed using the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9–18], which indicated a solvent cavity of volume 372 Å3 containing approximately 83 electrons. These solvent mol­ecules are not considered in the given chemical formula and other crystal data.




si

Crystal structure and Hirshfeld surface analysis of a zinc xanthate complex containing the 2,2'-bi­pyridine ligand

In the title compound, (2,2'-bi­pyridine-κ2N,N')bis­(2-meth­oxy­ethyl xanthato-κS)zinc(II), [Zn(C4H7O2S2)2(C10H8N2)], the ZnII ion is coordinated to two N atoms of the 2,2'-bi­pyridine ligand and two S atoms from two 2-meth­oxy­ethyl xanthate ligands. The ZnII ion lies on a crystallographic twofold rotation axis and has distorted tetra­hedral coordination geometry. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming supramolecular chains propagating along the a-axis direction. Weak intra­molecular C—H⋯S hydrogen bonds are also observed. The inter­molecular contacts in the crystal were further analysed using Hirshfield surface analysis, which indicates that the most significant contacts are H⋯H (36.3%), followed by S⋯H/H⋯S (24.7%), C⋯H/H⋯C (15.1%), O⋯H/H⋯O (14.4%), N⋯H/H⋯N (4.1%) and C⋯C (2.9%).




si

Synthesis, crystal structure and Hirshfeld surface analysis of diethyl 2,6-dimethyl-4-(thio­phen-3-yl)-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate

In the title compound, C17H21NO4S, the 1,4-di­hydro­pyridine ring has an envelope conformation with the Csp3 atom at the flap. The thio­phene ring is nearly perpendicular to the best plane through the 1,4-di­hydro­pyridine ring, the dihedral angle being 82.19 (13)°. In the crystal, chains running along the b-axis direction are formed through N—H⋯O inter­actions between the 1,4-di­hydro­pyridine N atom and one of the O atoms of the ester groups. Neighbouring chains are linked by C—H⋯O and C—H⋯π inter­actions. A Hirshfeld surface analysis shows that the most prominent contributuion to the surface contacts are H⋯H contacts (55.1%).




si

Crystal structure, Hirshfeld surface analysis and DFT studies of 6-[(E)-2-(thio­phen-2-yl)ethenyl]-4,5-di­hydro­pyridazin-3(2H)-one

In the title compound, C10H10N2OS, the five atoms of the thio­phene ring are essentially coplanar (r.m.s. deviation = 0.0037 Å) and the pyridazine ring is non-planar. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into dimers with an R22(8) ring motif. The dimers are linked by C—H⋯O inter­actions, forming layers parallel to the bc plane. The theoretical geometric parameters are in good agreement with XRD results. The inter­molecular inter­actions were investigated using a Hirshfeld surface analysis and two-dimensional fingerprint plots. The Hirshfeld surface analysis of the title compound suggests that the most significant contributions to the crystal packing are by H⋯H (39.7%), C⋯H/H⋯C (17.3%) and O⋯H/H⋯O (16.8%) contacts.




si

Structure refinement of (NH4)3Al2(PO4)3 prepared by ionothermal synthesis in phospho­nium based ionic liquids – a redetermination

After crystallization during ionothermal syntheses in phospho­nium-containing ionic liquids, the structure of (NH4)3Al2(PO4)3 [tri­ammonium dialuminum tris­(phosphate)] was refined on the basis of powder X-ray diffraction data from a synchrotron source. (NH4)3Al2(PO4)3 is a member of the structural family with formula A3Al2(PO4)3, where A is a group 1 element, and of which the NH4, K, and Rb forms were previously known. The NH4 form is isostructural with the K form, and was previously solved from single-crystal X-ray data when the material (SIZ-2) crystallized from a choline-containing eutectic mixture [Cooper et al. (2004). Nature, 430, 1012–1017]. Our independent refinement incorporates NH4 groups and shows that these NH4 groups are hydrogen bonded to framework O atoms present in rings containing 12 T sites in a channel along the c-axis direction. We describe structural details of (NH4)3Al2(PO4)3 and discuss differences with respect to isostructural forms.




si

Crystal structure, Hirshfeld surface analysis and DFT studies of 2-[5-(4-methyl­benz­yl)-6-oxo-3-phenyl-1,6-di­hydro­pyridazin-1-yl]acetic acid

The title pyridazinone derivative, C20H18N2O3, is not planar. The phenyl ring and the pyridazine ring are inclined to each other by 10.55 (12)°, whereas the 4-methyl­benzyl ring is nearly orthogonal to the pyridazine ring, with a dihedral angle of 72.97 (10)°. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers with an R22(14) ring motif. The dimers are linked by C—H⋯O hydrogen bonds, generating ribbons propagating along the c-axis direction. The inter­molecular inter­actions were additionally investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots. They revealed that the most significant contributions to the crystal packing are from H⋯H (48.4%), H⋯O/O⋯H (21.8%) and H⋯C/C⋯H (20.4%) contacts. Mol­ecular orbital calculations providing electron-density plots of HOMO and LUMO mol­ecular orbitals and mol­ecular electrostatic potentials (MEP) were also computed, both with the DFT/B3LYP/6–311 G++(d,p) basis set.




si

(E)-3-{[(2-Bromo-3-methyl­phen­yl)imino]­meth­yl}benzene-1,2-diol: crystal structure and Hirshfeld surface analysis

The title compound, C14H12BrNO2, was synthesized by the condensation reaction of 2,3-di­hydroxy­benzaldehyde and 2-bromo-3-methyl­aniline. It crystallizes in the centrosymmetric triclinic space group Poverline{1}. The configuration about the C=N bond is E. The dihedral angle between the planes of the 5-(2-bromo-3-methyl­phenyl ring and the catechol ring is 2.80 (17)°. In the crystal, O—H⋯O hydrogen-bond inter­actions consolidate the crystal packing.




si

Crystal structure, Hirshfeld surface analysis and contact enrichment ratios of 1-(2,7-di­methyl­imidazo[1,2-a]pyridin-3-yl)-2-(1,3-di­thio­lan-2-yl­idene)ethanone monohydrate

In the title hydrated hybrid compound C14H14N2OS2·H2O, the planar imidazo[1,2-a]pyridine ring system is linked to the 1,3-di­thiol­ane moiety by an enone bridge. The atoms of the C—C bond in the 1,3-di­thiol­ane ring are disordered over two positions with occupancies of 0.579 (14) and 0.421 (14) and both disordered rings adopt a half-chair conformation. The oxygen atom of the enone bridge is involved in a weak intra­molecular C—H⋯O hydrogen bond, which generates an S(6) graph-set motif. In the crystal, the hybrid mol­ecules are associated in R22(14) dimeric units by weak C—H⋯O inter­actions. O—H⋯O hydrogen bonds link the water mol­ecules, forming infinite self-assembled chains along the b-axis direction to which the dimers are connected via O—H⋯N hydrogen bonding. Analysis of inter­molecular contacts using Hirshfeld surface analysis and contact enrichment ratio descriptors indicate that hydrogen bonds induced by water mol­ecules are the main driving force in the crystal packing formation.




si

Crystal structure, computational study and Hirshfeld surface analysis of ethyl (2S,3R)-3-(3-amino-1H-1,2,4-triazol-1-yl)-2-hy­droxy-3-phenyl­propano­ate

In the title mol­ecule, C13H16N4O3, the mean planes of the phenyl and triazole rings are nearly perpendicular to one another as a result of the intra­molecular C—H⋯O and C—H⋯π(ring) inter­actions. In the crystal, layers parallel to (101) are generated by O—H⋯N, N—H⋯O and N—H⋯N hydrogen bonds. The layers are connected by inversion-related pairs of C—H⋯O hydrogen bonds. The experimental mol­ecular structure is close to the gas-phase geometry-optimized structure calculated by DFT methods. Hirshfeld surface analysis indicates that the most important inter­action involving hydrogen in the title compound is the H⋯H contact. The contribution of the H⋯O, H⋯N, and H⋯H contacts are 13.6, 16.1, and 54.6%, respectively.




si

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of 1-methyl-3-(prop-2-yn-1-yl)-2,3-di­hydro-1H-1,3-benzo­diazol-2-one

In the title mol­ecule, C11H10N2O, the di­hydro­benzimidazol-2-one moiety is essentially planar, with the prop-2-yn-1-yl substituent rotated well out of this plane. In the crystal, C—HMthy⋯π(ring) inter­actions and C—HProp⋯ODhyr (Mthy = methyl, Prop = prop-2-yn-1-yl and Dhyr = di­hydro) hydrogen bonds form corrugated layers parallel to (10overline{1}), which are associated through additional C—HBnz⋯ODhyr (Bnz = benzene) hydrogen bonds and head-to-tail, slipped, π-stacking [centroid-to-centroid distance = 3.7712 (7) Å] inter­actions between di­hydro­benzimidazol-2-one moieties. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (44.1%), H⋯C/C⋯H (33.5%) and O⋯H/H⋯O (13.4%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry calculations indicate that in the crystal, C—H⋯O hydrogen-bond energies are 46.8 and 32.5 (for C—HProp⋯ODhyr) and 20.2 (for C—HBnz⋯ODhyr) kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




si

Crystal structure, Hirshfeld analysis and a mol­ecular docking study of a new inhibitor of the Hepatitis B virus (HBV): ethyl 5-methyl-1,1-dioxo-2-{[5-(pentan-3-yl)-1,2,4-oxa­diazol-3-yl]meth­yl}-2H-1,2,6-thia­diazine-4-carboxyl­a

The title compound, C15H22N4O5S, was prepared via alkyl­ation of 3-(chloro­meth­yl)-5-(pentan-3-yl)-1,2,4-oxa­diazole in anhydrous dioxane in the presence of tri­ethyl­amine. The thia­diazine ring has an envelope conformation with the S atom displaced by 0.4883 (6) Å from the mean plane through the other five atoms. The planar 1,2,4-oxa­diazole ring is inclined to the mean plane of the thia­diazine ring by 77.45 (11)°. In the crystal, mol­ecules are linked by C—H⋯N hydrogen bonds, forming chains propagating along the b-axis direction. Hirshfeld surface analysis and two-dimensional fingerprint plots have been used to analyse the inter­molecular contacts present in the crystal. Mol­ecular docking studies were use to evaluate the title compound as a potential system that inter­acts effectively with the capsid of the Hepatitis B virus (HBV), supported by an experimental in vitro HBV replication model.




si

Crystal structure and Hirshfeld surface analysis of 4-{[(anthracen-9-yl)meth­yl]amino}­benzoic acid

In the mol­ecule of the title anthracene derivative, C22H17NO2, the benzene ring is inclined to the mean plane of the anthracene ring system (r.m.s. deviation = 0.024 Å) by 75.21 (9)°. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming classical carb­oxy­lic acid inversion dimers with an R22(8) ring motif. The dimers are linked by C—H⋯π inter­actions, forming a supra­molecular framework.




si

N,N'-Bis(pyridin-3-ylmeth­yl)ethanedi­amide monohydrate: crystal structure, Hirshfeld surface analysis and computational study

The mol­ecular structure of the title bis-pyridyl substituted di­amide hydrate, C14H14N4O2·H2O, features a central C2N2O2 residue (r.m.s. deviation = 0.0205 Å) linked at each end to 3-pyridyl rings through methyl­ene groups. The pyridyl rings lie to the same side of the plane, i.e. have a syn-periplanar relationship, and form dihedral angles of 59.71 (6) and 68.42 (6)° with the central plane. An almost orthogonal relationship between the pyridyl rings is indicated by the dihedral angle between them [87.86 (5)°]. Owing to an anti disposition between the carbonyl-O atoms in the core, two intra­molecular amide-N—H⋯O(carbon­yl) hydrogen bonds are formed, each closing an S(5) loop. Supra­molecular tapes are formed in the crystal via amide-N—H⋯O(carbon­yl) hydrogen bonds and ten-membered {⋯HNC2O}2 synthons. Two symmetry-related tapes are linked by a helical chain of hydrogen-bonded water mol­ecules via water-O—H⋯N(pyrid­yl) hydrogen bonds. The resulting aggregate is parallel to the b-axis direction. Links between these, via methyl­ene-C—H⋯O(water) and methyl­ene-C—H⋯π(pyrid­yl) inter­actions, give rise to a layer parallel to (10overline{1}); the layers stack without directional inter­actions between them. The analysis of the Hirshfeld surfaces point to the importance of the specified hydrogen-bonding inter­actions, and to the significant influence of the water mol­ecule of crystallization upon the mol­ecular packing. The analysis also indicates the contribution of methyl­ene-C—H⋯O(carbon­yl) and pyridyl-C—H⋯C(carbon­yl) contacts to the stability of the inter-layer region. The calculated inter­action energies are consistent with importance of significant electrostatic attractions in the crystal.




si

Synthesis and crystal structure of catena-poly[[bis[(2,2';6',2''-terpyridine)­manganese(II)]-μ4-penta­thio­dianti­monato] tetra­hydrate] showing a 1D MnSbS network

The asymmetric unit of the title compound, {[Mn2Sb2S5(C15H11N3)2]·4H2O}n, consists of two crystallographically independent MnII ions, two unique terpyridine ligands, one [Sb2S5]4− anion and four solvent water mol­ecules, all of which are located in general positions. The [Sb2S5]4− anion consists of two SbS3 units that share common corners. Each of the MnII ions is fivefold coordinated by two symmetry-related S atoms of [Sb2S5]4− anions and three N atoms of a terpyridine ligand within an irregular coordination. Each two anions are linked by two [Mn(terpyridine)]2+ cations into chains along the c-axis direction that consist of eight-membered Mn2Sb2S4 rings. These chains are further connected into a three-dimensional network by inter­molecular O—H⋯O and O—H⋯S hydrogen bonds. The crystal investigated was twinned and therefore, a twin refinement using data in HKLF-5 [Sheldrick (2015). Acta Cryst. C71, 3–8] format was performed.




si

Crystal and mol­ecular structures of a binuclear mixed ligand complex of silver(I) with thio­cyanate and 1H-1,2,4-triazole-5(4H)-thione

The complete mol­ecule of the binuclear title complex, bis­[μ-1H-1,2,4-triazole-5(4H)-thione-κ2S:S]bis­{(thio­cyanato-κS)[1H-1,2,4-triazole-5(4H)-thione-κS]silver(I)}, [Ag2(SCN)2(C2H3N3S)4], is generated by crystallographic inversion symmetry. The independent triazole-3-thione ligands employ the exocyclic-S atoms exclusively in coordination. One acts as a terminal S-ligand and the other in a bidentate (μ2) bridging mode to provide a link between two AgI centres. Each AgI atom is also coordinated by a terminal S-bound thio­cyanate ligand, resulting in a distorted AgS4 tetra­hedral coordination geometry. An intra­molecular N—H⋯S(thio­cyanate) hydrogen bond is noted. In the crystal, amine-N—H⋯S(thione), N—H⋯N(triazol­yl) and N—H⋯N(thio­cyanate) hydrogen bonds give rise to a three-dimensional architecture. The packing is consolidated by triazolyl-C—H⋯S(thio­cyanate), triazolyl-C—H⋯N(thiocyanate) and S⋯S [3.2463 (9) Å] inter­actions as well as face-to-face π–π stacking between the independent triazolyl rings [inter-centroid separation = 3.4444 (15) Å]. An analysis of the calculated Hirshfeld surfaces shows the three major contributors are due to N⋯H/H⋯N, S⋯H/H⋯S and C⋯H/H⋯C contacts, at 35.8, 19.4 and 12.7%, respectively; H⋯H contacts contribute only 7.6% to the overall surface.




si

Crystal structure and Hirshfeld surface analysis of (E)-3-(3-iodo­phen­yl)-1-(4-iodo­phen­yl)prop-2-en-1-one

The title compound, C15H10I2O, is a halogenated chalcone formed from two iodine substituted rings, one para-substituted and the other meta-substituted, linked through a prop-2-en-1-one spacer. In the mol­ecule, the mean planes of the 3-iodo­phenyl and the 4-iodo­phenyl groups are twisted by 46.51 (15)°. The calculated electrostatic potential surfaces show the presence of σ-holes on both substituted iodines. In the crystal, the mol­ecules are linked through type II halogen bonds, forming a sheet structure parallel to the bc plane. Between the sheets, weak inter­molecular C—H⋯π inter­actions are observed. Hirshfeld surface analysis showed that the most significant contacts in the structure are C⋯H/H⋯C (31.9%), followed by H⋯H (21.4%), I⋯H/H⋯I (18.4%). I⋯I (14.5%) and O⋯H/H⋯O (8.1%).




si

Crystal structure, Hirshfeld surface analysis and computational study of bis­(2-{[(2,6-di­chloro­benzyl­idene)hydrazinyl­idene]meth­yl}phenolato)cobalt(II) and of the copper(II) analogue

The title homoleptic Schiff base complexes, [M(C14H9Cl2N2O)2], for M = CoII, (I), and CuII, (II), present distinct coordination geometries despite the Schiff base dianion coordinating via the phenolato-O and imine-N atoms in each case. For (I), the coordination geometry is based on a trigonal bipyramid whereas for (II), a square-planar geometry is found (Cu site symmetry overline{1}). In the crystal of (I), discernible supra­molecular layers in the ac plane are sustained by chloro­benzene-C—H⋯O(coordinated), chloro­benzene-C—H⋯π(fused-benzene ring) as well as π(fused-benzene, chloro­benzene)–π(chloro­benzene) inter­actions [inter-centroid separations = 3.6460 (17) and 3.6580 (16) Å, respectively]. The layers inter-digitate along the b-axis direction and are linked by di­chloro­benzene-C—H⋯π(fused-benzene ring) and π–π inter­actions between fused-benzene rings and between chloro­benzene rings [inter-centroid separations = 3.6916 (16) and 3.7968 (19) Å, respectively] . Flat, supra­molecular layers are also found in the crystal of (II), being stabilized by π–π inter­actions formed between fused-benzene rings and between chloro­benzene rings [inter-centroid separations = 3.8889 (15) and 3.8889 (15) Å, respectively]; these stack parallel to [10overline{1}] without directional inter­actions between them. The analysis of the respective calculated Hirshfeld surfaces indicate diminished roles for H⋯H contacts [26.2% (I) and 30.5% (II)] owing to significant contributions by Cl⋯H/H⋯Cl contacts [25.8% (I) and 24.9% (II)]. Minor contributions by Cl⋯Cl [2.2%] and Cu⋯Cl [1.9%] contacts are indicated in the crystals of (I) and (II), respectively. The inter­action energies largely arise from dispersion terms; the aforementioned Cu⋯Cl contact in (II) gives rise to the most stabilizing inter­action in the crystal of (II).




si

Crystal structure and Hirshfeld surface analysis of a copper(II) complex with ethyl­enedi­amine and non-coordinated benzoate

In the title compound, di­aqua­bis­(ethyl­enedi­amine-κ2N,N')copper(II) bis­(2-nitro­benzoate), [Cu(C2H8N2)2(H2O)2](C7H4NO4)2, two di­aqua­bis­(ethyl­enedi­amine)­copper(II) cations and four nitro­benzoate anions are present in the asymmetric unit. All four anions are `whole-mol­ecule' disordered over two sets of sites. The major components have refined occupancies of 0.572 (13), 0.591 (9), 0.601 (9) and 0.794 (10). The CuII ions exhibit slightly distorted octa­hedral geometries. In the crystal, cations and anions are connected to each other via N—H⋯O and O—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (200). The inter­molecular contacts in the crystal were further analysed using Hirshfeld surface analysis, which indicates that the most significant contacts are O⋯H/H⋯O (42.9%), followed by H⋯H (35.7%), C⋯H/H⋯C (14.2%), C⋯C (2.9%), C⋯O/O⋯C (2.2%), N⋯H/H⋯N (0.9%) and N⋯O/O⋯N (0.3%).




si

Synthesis and crystal structure of (1,8-naphth­yridine-κ2N,N')[2-(1H-pyrazol-1-yl)phenyl-κ2N2,C1]iridium(III) hexa­fluorido­phosphate di­chloro­methane monosolvate

The solvated title salt, [Ir(C9H7N2)2(C8H6N2)]PF6·CH2Cl2, was obtained from the reaction between 1,8-naphthyridine (NAP) and an orthometalated iridium(III) precursor containing a 1-phenyl­pyrazole (ppz) ligand. The asymmetric unit comprises one [Ir(ppz)2(NAP)]+ cation, one PF6− counter-ion and one CH2Cl2 solvent mol­ecule. The central IrIII atom of the [Ir(ppz)2(NAP)]+ cation is distorted-octa­hedrally coordinated by four N atoms and two C atoms, whereby two N atoms stem from the NAP ligand while the ppz ligands ligate through one N and one C atom each. In the crystal, the [Ir(ppz)2(NAP)]+ cations and PF6− counter-ions are connected with each other through weak inter­molecular C—H⋯F hydrogen bonds. Together with an additional C—H⋯F inter­action involving the solvent mol­ecule, a three-dimensional network structure is formed.




si

Crystal structure, Hirshfeld surface analysis and DFT studies of 1-benzyl-3-[(1-benzyl-1H-1,2,3-triazol-5-yl)meth­yl]-2,3-di­hydro-1H-1,3-benzo­diazol-2-one monohydrate

In the title mol­ecule, C24H21N5O·H2O, the di­hydro­benzo­diazole moiety is not quite planar, while the whole mol­ecule adopts a U-shaped conformation in which there is a close approach of the two benzyl groups. In the crystal, chains of alternating mol­ecules and lattice water extending along [201] are formed by O—HUncoordW⋯ODhyr and O—HUncoordW⋯NTrz (UncoordW = uncoordinated water, Dhyr = di­hydro and Trz = triazole) hydrogen bonds. The chains are connected into layers parallel to (010) by C—HTrz⋯OUncoordW hydrogen bonds with the di­hydro­benzo­diazole units in adjacent layers inter­calating to form head-to-tail π-stacking [centroid-to-centroid distance = 3.5694 (11) Å] inter­actions between them, which generates the overall three-dimensional structure. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯H (52.1%), H⋯C/C⋯H (23.8%) and O⋯H/H⋯O (11.2%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.




si

The 1:2 co-crystal formed between N,N'-bis(pyridin-4-ylmeth­yl)ethanedi­amide and benzoic acid: crystal structure, Hirshfeld surface analysis and computational study

The crystal and mol­ecular structures of the title 1:2 co-crystal, C14H14N4O2·2C7H6O2, are described. The oxalamide mol­ecule has a (+)-anti­periplanar conformation with the 4-pyridyl residues lying to either side of the central, almost planar C2N2O2 chromophore (r.m.s. deviation = 0.0555 Å). The benzoic acid mol­ecules have equivalent, close to planar conformations [C6/CO2 dihedral angle = 6.33 (14) and 3.43 (10)°]. The formation of hy­droxy-O—H⋯N(pyrid­yl) hydrogen bonds between the benzoic acid mol­ecules and the pyridyl residues of the di­amide leads to a three-mol­ecule aggregate. Centrosymmetrically related aggregates assemble into a six-mol­ecule aggregate via amide-N—H⋯O(amide) hydrogen bonds through a 10-membered {⋯HNC2O}2 synthon. These are linked into a supra­molecular tape via amide-N—H⋯O(carbon­yl) hydrogen bonds and 22-membered {⋯HOCO⋯NC4NH}2 synthons. The contacts between tapes to consolidate the three-dimensional architecture are of the type methyl­ene-C—H⋯O(amide) and pyridyl-C—H⋯O(carbon­yl). These inter­actions are largely electrostatic in nature. Additional non-covalent contacts are identified from an analysis of the calculated Hirshfeld surfaces.




si

Synthesis and crystal structures of a bis­(3-hy­droxy-cyclo­hex-2-en-1-one) and two hexa­hydro­quinoline derivatives

The title compound I, 2,2'-[(2-nitro­phen­yl)methyl­ene]bis­(3-hy­droxy-5,5-di­methyl­cyclo­hex-2-enone), C23H27NO6, features a 1,3-ketone–enol conformation which is stabilized by two intra­molecular hydrogen bonds. The most prominent inter­molecular inter­actions in compound I are C—H⋯O hydrogen bonds, which link mol­ecules into a two-dimensional network parallel to the (001) plane and a chain perpendicular to (1overline{1}1). Both title compounds II, ethyl 4-(4-hy­droxy-3,5-di­meth­oxy­phen­yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carb­oxyl­ate, C23H29NO6, and III, ethyl 4-(anthracen-9-yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate, C29H29NO3, share the same structural features, such as a shallow boat conformation of the di­hydro­pyridine group and an orthogonal aryl group attached to the di­hydro­pyridine. Inter­molecular N—H⋯O bonding is present in the crystal packing of both compound II and III.




si

Synthesis, crystal structure and Hirshfeld analysis of a crystalline compound comprising a 1/1 mixture of 1-[(1R,4S)- and 1-[(1S,4R)-1,7,7-trimethyl-2-oxobi­cyclo[2.2.1]heptan-3-yl­idene]hydrazinecarbo­thio­amide

The equimolar reaction between a racemic mixture of (R)- and (S)-camphorquinone with thio­semicarbazide yielded the title compound, C11H17N3OS [common name: (R)- and (S)-camphor thio­semicarbazone], which maintains the chirality of the methyl­ated chiral carbon atoms and crystallizes in the centrosymmetric space group C2/c. There are two mol­ecules in general positions in the asymmetric unit, one of them being the (1R)-camphor thio­semicarbazone isomer and the second the (1S)- isomer. In the crystal, the mol­ecular units are linked by C—H⋯S, N—H⋯O and N—H⋯S inter­actions, building a tape-like structure parallel to the (overline{1}01) plane, generating R21(7) and R22(8) graph-set motifs for the H⋯S inter­actions. The Hirshfeld surface analysis indicates that the major contributions for crystal cohesion are from H⋯H (55.00%), H⋯S (22.00%), H⋯N (8.90%) and H⋯O (8.40%) inter­actions.




si

Synthesis and crystal structure of a mixed alkaline-earth powellite, Ca0.84Sr0.16MoO4

A mixed alkaline-earth powellite, Ca0.84Sr0.16MoO4 (calcium strontium molybdate), was synthesized by a flux method and its crystal structure was solved using single-crystal X-ray diffraction (SC-XRD) data. The compound crystallized in the I41/a space group as with a typical CaMoO4 powellite, but with larger unit-cell parameters and unit-cell volume as a result of the partial incorporation of larger Sr cations into the Ca sites within the crystal. The unit cell and volume were well fitted with the trendline calculated from literature values, and the powder X-ray diffraction (P-XRD) pattern of the ground crystal is in good agreement with the calculated pattern from the solved structure.




si

Crystal structure, DFT and Hirshfeld surface analysis of (E)-N'-[(1-chloro-3,4-di­hydro­naph­thal­en-2-yl)methyl­idene]benzohydrazide monohydrate

In the title compound, C18H15ClN2O·H2O, a benzohydrazide derivative, the dihedral angle between the mean plane of the di­hydro­naphthalene ring system and the phenyl ring is 17.1 (2)°. In the crystal, O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds link the benzohydrazide and water mol­ecules, forming a layer parallel to the bc plane. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (45.7%) and H⋯C/C⋯H (20.2%) contacts.




si

Crystal structure, spectroscopic characterization and Hirshfeld surface analysis of aqua­dichlorido­{N-[(pyridin-2-yl)methyl­idene]aniline}copper(II) monohydrate

The reaction of N-phenyl-1-(pyridin-2-yl)methanimine with copper chloride dihydrate produced the title neutral complex, [CuCl2(C12H10N2)(H2O)]·H2O. The CuII ion is five-coordinated in a distorted square-pyramidal geometry, in which the two N atoms of the bidentate Schiff base, as well as one chloro and a water mol­ecule, form the irregular base of the pyramidal structure. Meanwhile, the apical chloride ligand inter­acts through a strong hydrogen bond with a water mol­ecule of crystallization. In the crystal, mol­ecules are arranged in pairs, forming a stacking of symmetrical cyclic dimers that inter­act in turn through strong hydrogen bonds between the chloride ligands and both the coordinated and the crystallization water mol­ecules. The mol­ecular and electronic structures of the complex were also studied in detail using EPR (continuous and pulsed), FT–IR and Raman spectroscopy, as well as magnetization measurements. Likewise, Hirshfeld surface analysis was used to investigate the inter­molecular inter­actions in the crystal packing.




si

Crystal structure and Hirshfeld surface analysis of 1,2,4-triazolium hydrogen oxalate

The asymmetric unit of the title 1:1 salt 1,2,4-triazolium hydrogen oxalate, C2H4N3+·C2HO4− (I), comprises one 1,2,4-triazolium cation and one hydrogen oxalate anion. In the crystal, the hydrogen oxalate anions are linked by O—H⋯O hydrogen bonds into chains running parallel to [100]. In turn, the anionic chains are linked through the 1,2,4-triazolium cations by charge-assisted +N—H⋯O− hydrogen bonds into sheets aligned parallel to (01overline{1}). The sheets are further stacked through π–π inter­actions between the 1,2,4-triazolium rings [centroid-to-centroid distance = 3.642 (3) Å, normal distance = 3.225 (3) Å, slippage 1.691 Å], resulting in the formation of a three-dimensional supra­molecular network. Hirshfeld surface analysis of the title salt suggests that the most significant contributions to the crystal packing are by H⋯O/O⋯H and H⋯N/N⋯H contacts involving the hydrogen bonds.




si

3,3-Bis(2-hy­droxy­eth­yl)-1-(4-nitro­benzo­yl)thio­urea: crystal structure, Hirshfeld surface analysis and computational study

In the title compound, C12H15N3O5S, a tris­ubstituted thio­urea derivative, the central CN2S chromophore is almost planar (r.m.s. deviation = 0.018 Å) and the pendant hy­droxy­ethyl groups lie to either side of this plane. While to a first approximation the thione-S and carbonyl-O atoms lie to the same side of the mol­ecule, the S—C—N—C torsion angle of −47.8 (2)° indicates a considerable twist. As one of the hy­droxy­ethyl groups is orientated towards the thio­amide residue, an intra­molecular N—H⋯O hydrogen bond is formed which leads to an S(7) loop. A further twist in the mol­ecule is indicated by the dihedral angle of 65.87 (7)° between the planes through the CN2S chromophore and the 4-nitro­benzene ring. There is a close match between the experimental and gas-phase, geometry-optimized (DFT) mol­ecular structures. In the crystal, O—H⋯O and O—H⋯S hydrogen bonds give rise to supra­molecular layers propagating in the ab plane. The connections between layers to consolidate the three-dimensional architecture are of the type C—H⋯O, C—H⋯S and nitro-O⋯π. The nature of the supra­molecular association has been further analysed by a study of the calculated Hirshfeld surfaces, non-covalent inter­action plots and computational chemistry, all of which point to the significant influence and energy of stabilization provided by the conventional hydrogen bonds.




si

Synthesis and crystal structure of 3-(adamantan-1-yl)-4-(2-bromo-4-fluoro­phen­yl)-1H-1,2,4-triazole-5(4H)-thione

In the title compound, C18H19BrFN3S, the 1,2,4-triazole ring is nearly planar with a maximum deviation of −0.009 (3) and 0.009 (4) Å, respectively, for the S-bound C atom and the N atom bonded to the bromo­fluoro­phenyl ring. The phenyl and triazole rings are almost perpendicular to each other, forming a dihedral angle of 89.5 (2)°. In the crystal, the mol­ecules are linked by weak C—H⋯π(phen­yl) inter­actions, forming supra­molecular chains extending along the c-axis direction. The crystal packing is further consolidated by inter­molecular N—H⋯S hydrogen bonds and by weak C—H⋯S inter­actions, yielding double chains propagating along the a-axis direction. The crystal studied was refined as a racemic twin.




si

Crystal structure of silver strontium copper orthophosphate, AgSr4Cu4.5(PO4)6

Crystals of the new compound, AgSr4Cu4.5(PO4)6, were grown successfully by the hydro­thermal process. The asymmetric unit of the crystal structure of the title compound contains 40 independent atoms (4 Sr, 4.5 Cu, 1 Ag, 6 P and 24 O), which are all in general positions except for one Cu atom, which is located on an inversion centre. The Cu atoms are arranged in CuOn (n = 4 or 5) polyhedra, linked through common oxygen corners to build a rigid three-dimensional motif. The connection of these copper units is assured by PO4 tetra­hedra. This arrangement allows the construction of layers extending parallel to the (100) plane and hosts suitable cavities in which Ag+ and Sr2+ cations are located. The crystal-structure cohesion is ensured by ionic bonds between the silver and strontium cations and the oxygen anions belonging to two adjacent sheets. Charge-distribution analysis and bond-valence-sum calculations were used to validate the structural model.




si

(N,N-Di­allyl­dithio­carbamato-κ2S,S')tri­phenyltin(IV) and bis­(N,N-di­allyl­dithio­carbamato-κ2S,S')di­phenyl­tin(IV): crystal structure, Hirshfeld surface analysis and computational study

The crystal and mol­ecular structures of the title organotin di­thio­carbamate compounds, [Sn(C6H5)3(C7H10NS2)] (I) and [Sn(C6H5)2(C7H10NS2)2] (II), present very distinct tin atom coordination geometries. In (I), the di­thio­carbamate ligand is asymmetrically coordinating with the resulting C3S2 donor set defining a coordination geometry inter­mediate between square-pyramidal and trigonal–bipyramidal. In (II), two independent mol­ecules comprise the asymmetric unit, which differ in the conformations of the allyl substituents and in the relative orientations of the tin-bound phenyl rings. The di­thio­carbamate ligands in (II) coordinate in an asymmetric mode but the Sn—S bonds are more symmetric than observed in (I). The resulting C2S4 donor set approximates an octa­hedral coordination geometry with a cis-disposition of the ipso-carbon atoms and with the more tightly bound sulfur atoms approximately trans. The only directional inter­molecular contacts in the crystals of (I) and (II) are of the type phenyl-C—H⋯π(phen­yl) and vinyl­idene-C—H⋯π(phen­yl), respectively, with each leading to a supra­molecular chain propagating along the a-axis direction. The calculated Hirshfeld surfaces emphasize the importance of H⋯H contacts in the crystal of (I), i.e. contributing 62.2% to the overall surface. The only other two significant contacts also involve hydrogen, i.e. C⋯H/H⋯C (28.4%) and S⋯H/H⋯S (8.6%). Similar observations pertain to the individual mol­ecules of (II), which are clearly distinguishable in their surface contacts, with H⋯H being clearly dominant (59.9 and 64.9%, respectively) along with C⋯H/H⋯C (24.3 and 20.1%) and S⋯H/H⋯S (14.4 and 13.6%) contacts. The calculations of energies of inter­action suggest dispersive forces make a significant contribution to the stabilization of the crystals. The exception is for the C—H⋯π contacts in (II) where, in addition to the dispersive contribution, significant contributions are made by the electrostatic forces.




si

Crystal structure of the deuterated hepta­hydrate of potassium phosphate, K3PO4·7D2O

Deuterated potassium orthophosphate hepta­hydrate, K3PO4·7D2O, crystallizes in the Sohnke space group P21, and its absolute structure was determined from 2017 Friedel pairs [Flack parameter 0.004 (16)]. Each of the three crystallographically unique K+ cations is surrounded by six water mol­ecules and one oxygen atom from the orthophosphate group, using a threshold for K—O bonds of 3.10 Å. The highly irregular coordination polyhedra are linked by corner- and edge-sharing into a three-dimensional network that is consolidated by an intricate network of O—D⋯O hydrogen bonds of medium strength.




si

Synthesis, crystal structure and spectroscopic and Hirshfeld surface analysis of 4-hy­droxy-3-meth­oxy-5-nitro­benzaldehyde

The title compound, C8H7NO5, is planar with an r.m.s. deviation for all non-hydrogen atoms of 0.018 Å. An intra­molecular O—H⋯O hydrogen bond involving the adjacent hy­droxy and nitro groups forms an S(6) ring motif. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains propagating along the b-axis direction. The chains are linked by C—H⋯O hydrogen bonds, forming layers parallel to the bc plane. The layers are linked by a further C—H⋯O hydrogen bond, forming slabs, which are linked by C=O⋯π inter­actions, forming a three-dimensional supra­molecular structure. Hirshfeld surface analysis was used to investigate inter­molecular inter­actions in the solid state. The mol­ecule was also characterized spectroscopically and its thermal stability investigated by differential scanning calorimetry and by thermogravimetric analysis.




si

The synthesis, crystal structure and Hirshfeld analysis of 4-(3,4-di­methyl­anilino)-N-(3,4-di­methyl­phen­yl)quinoline-3-carboxamide

The structure of the title quinoline carboxamide derivative, C26H25N3O, is described. The quinoline moiety is not planar as a result of a slight puckering of the pyridine ring. The secondary amine has a slightly pyramidal geometry, certainly not planar. Both intra- and inter­molecular hydrogen bonds are present. Hirshfeld surface analysis and lattice energies were used to investigate the inter­molecular inter­actions.




si

(E)-{[(Butyl­sulfan­yl)methane­thio­yl]amino}(4-meth­oxy­benzyl­idene)amine: crystal structure and Hirshfeld surface analysis

The title hydrazine carbodi­thio­ate, C13H18N2OS2, is constructed about a central and almost planar C2N2S2 chromophore (r.m.s. deviation = 0.0263 Å); the terminal meth­oxy­benzene group is close to coplanar with this plane [dihedral angle = 3.92 (11)°]. The n-butyl group has an extended all-trans conformation [torsion angles S—Cm—Cm—Cm = −173.2 (3)° and Cm—Cm—Cm—Cme = 180.0 (4)°; m = methyl­ene and me = meth­yl]. The most prominent feature of the mol­ecular packing is the formation of centrosymmetric eight-membered {⋯HNCS}2 synthons, as a result of thio­amide-N—H⋯S(thio­amide) hydrogen bonds; these are linked via meth­oxy-C–H⋯π(meth­oxy­benzene) inter­actions to form a linear supra­molecular chain propagating along the a-axis direction. An analysis of the calculated Hirshfeld surfaces and two-dimensional fingerprint plots point to the significance of H⋯H (58.4%), S⋯H/H⋯S (17.1%), C⋯H/H⋯C (8.2%) and O⋯H/H⋯O (4.9%) contacts in the packing. The energies of the most significant inter­actions, i.e. the N—H⋯S and C—H⋯π inter­actions have their most significant contributions from electrostatic and dispersive components, respectively. The energies of two other identified close contacts at close to van der Waals distances, i.e. a thione–sulfur and meth­oxy­benzene–hydrogen contact (occurring within the chains along the a axis) and between methyl­ene-H atoms (occurring between chains to consolidate the three-dimensional architecture), are largely dispersive in nature.




si

Structural characterization and Hirshfeld surface analysis of 2-iodo-4-(penta­fluoro-λ6-sulfan­yl)benzo­nitrile

The title compound, C7H3F5INS, a penta­fluoro­sulfanyl (SF5) containing arene, was synthesized from 4-(penta­fluoro­sulfan­yl)benzo­nitrile and lithium tetra­methyl­piperidide following a variation to the standard approach, which features simple and mild conditions that allow direct access to tri-substituted SF5 inter­mediates that have not been demonstrated using previous methods. The mol­ecule displays a planar geometry with the benzene ring in the same plane as its three substituents. It lies on a mirror plane perpendicular to [010] with the iodo, cyano, and the sulfur and axial fluorine atoms of the penta­fluoro­sulfanyl substituent in the plane of the mol­ecule. The equatorial F atoms have symmetry-related counterparts generated by the mirror plane. The penta­fluoro­sulfanyl group exhibits a staggered fashion relative to the ring and the two hydrogen atoms ortho to the substituent. S—F bond lengths of the penta­fluoro­sulfanyl group are unequal: the equatorial bond facing the iodo moiety has a longer distance [1.572 (3) Å] and wider angle compared to that facing the side of the mol­ecules with two hydrogen atoms [1.561 (4) Å]. As expected, the axial S—F bond is the longest [1.582 (5) Å]. In the crystal, in-plane C—H⋯F and N⋯I inter­actions as well as out-of-plane F⋯C inter­actions are observed. According to the Hirshfeld analysis, the principal inter­molecular contacts for the title compound are F⋯H (29.4%), F⋯I (15.8%), F⋯N (11.4%), F⋯F (6.0%), N⋯I (5.6%) and F⋯C (4.5%).




si

Crystal structure, Hirshfeld surface analysis and computational study of the 1:2 co-crystal formed between N,N'-bis­(pyridin-4-ylmeth­yl)ethane­diamide and 4-chloro­benzoic acid

The asymmetric unit of the title 1:2 co-crystal, C14H14N4O2·2C7H5ClO2, comprises two half mol­ecules of oxalamide (4LH2), as each is disposed about a centre of inversion, and two mol­ecules of 4-chloro­benzoic acid (CBA), each in general positions. Each 4LH2 mol­ecule has a (+)anti­periplanar conformation with the pyridin-4-yl residues lying to either side of the central, planar C2N2O2 chromophore with the dihedral angles between the respective central core and the pyridyl rings being 68.65 (3) and 86.25 (3)°, respectively, representing the major difference between the independent 4LH2 mol­ecules. The anti conformation of the carbonyl groups enables the formation of intra­molecular amide-N—H⋯O(amide) hydrogen bonds, each completing an S(5) loop. The two independent CBA mol­ecules are similar and exhibit C6/CO2 dihedral angles of 8.06 (10) and 17.24 (8)°, indicating twisted conformations. In the crystal, two independent, three-mol­ecule aggregates are formed via carb­oxy­lic acid-O—H⋯N(pyrid­yl) hydrogen bonding. These are connected into a supra­molecular tape propagating parallel to [100] through amide-N—H⋯O(amide) hydrogen bonding between the independent aggregates and ten-membered {⋯HNC2O}2 synthons. The tapes assemble into a three-dimensional architecture through pyridyl- and methyl­ene-C—H⋯O(carbon­yl) and CBA-C—H⋯O(amide) inter­actions. As revealed by a more detailed analysis of the mol­ecular packing by calculating the Hirshfeld surfaces and computational chemistry, are the presence of attractive and dispersive Cl⋯C=O inter­actions which provide inter­action energies approximately one-quarter of those provided by the amide-N—H⋯O(amide) hydrogen bonding sustaining the supra­molecular tape.




si

Crystal structures and Hirshfeld surface analysis of trans-bis­(thio­cyanato-κN)bis­{2,4,6-trimethyl-N-[(pyridin-2-yl)methyl­idene]aniline-κ2N,N'}manganese(II) and trans-bis­(thio­cyanato-κN)bis­{2,4,6-trimethyl-N-[(pyri

Two new mononuclear metal complexes involving the bidentate Schiff base ligand 2,4,6-trimethyl-N-[(pyridin-2-yl)methyl­idene]aniline (C15H16N2 or PM-TMA), [Mn(NCS)2(PM-TMA)2] (I) and [Ni(NCS)2(PM-TMA)2] (II), were synthesized and their structures determined by single-crystal X-ray diffraction. Although the title compounds crystallize in different crystal systems [triclinic for (I) and monoclinic for (II)], both asymmetric units consist of one-half of the complex mol­ecule, i.e. one metal(II) cation, one PM-TMA ligand, and one N-bound thio­cyanate anion. In both complexes, the metal(II) cation is located on a centre of inversion and adopts a distorted octa­hedral coordination environment defined by four N atoms from two symmetry-related PM-TMA ligands in the equatorial plane and two N atoms from two symmetry-related NCS− anions in a trans axial arrangement. The tri­methyl­benzene and pyridine rings of the PM-TMA ligand are oriented at dihedral angles of 74.18 (7) and 77.70 (12)° for (I) and (II), respectively. The subtle change in size of the central metal cations leads to a different crystal packing arrangement for (I) and (II) that is dominated by weak C—H⋯S, C—H⋯π, and π–π inter­actions. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to qu­antify these inter­molecular contacts, and indicate that the most significant contacts in packing are H⋯H [48.1% for (I) and 54.9% for (II)], followed by H⋯C/C⋯H [24.1% for (I) and 15.7% for (II)], and H⋯S/S⋯H [21.1% for (I) and 21.1% for (II)].




si

A new pseudopolymorph of perchlorinated neo­penta­silane: the benzene monosolvate Si(SiCl3)4·C6H6

A new pseudopolymorph of dodeca­chloro­penta­silane, namely a benzene monosolvate, Si5Cl12·C6H6, is described. There are two half mol­ecules of each kind in the asymmetric unit. Both Si5Cl12 mol­ecules are completed by crystallographic twofold symmetry. One of the benzene mol­ecules is located on a twofold rotation axis with two C—H groups located on this rotation axis. The second benzene mol­ecule has all atoms on a general position: it is disordered over two equally occupied orientations. No directional inter­actions beyond normal van der Waals contacts occur in the crystal.




si

Crystal structure, Hirshfeld surface analysis, inter­action energy and DFT studies of (2Z)-2-(2,4-di­chloro­benzyl­idene)-4-nonyl-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one

The title compound, C24H27Cl2NOS, contains 1,4-benzo­thia­zine and 2,4-di­chloro­phenyl­methyl­idene units in which the di­hydro­thia­zine ring adopts a screw-boat conformation. In the crystal, inter­molecular C—HBnz⋯OThz (Bnz = benzene and Thz = thia­zine) hydrogen bonds form chains of mol­ecules extending along the a-axis direction, which are connected to their inversion-related counterparts by C—HBnz⋯ClDchlphy (Dchlphy = 2,4-di­chloro­phen­yl) hydrogen bonds and C—HDchlphy⋯π (ring) inter­actions. These double chains are further linked by C—HDchlphy⋯OThz hydrogen bonds, forming stepped layers approximately parallel to (012). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (44.7%), C⋯H/H⋯C (23.7%), Cl⋯H/H⋯Cl (18.9%), O⋯H/H⋯O (5.0%) and S⋯H/H⋯S (4.8%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry indicates that in the crystal, C—HDchlphy⋯OThz, C—HBnz⋯OThz and C—HBnz⋯ClDchlphy hydrogen-bond energies are 134.3, 71.2 and 34.4 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. The two carbon atoms at the end of the nonyl chain are disordered in a 0.562 (4)/0.438 (4) ratio.