ac

LINEAR DISPLACEMENT DAMPER STRUCTURE

A linear displacement damper structure includes a screw shaft, a metallic disk, a screw barrel, a controlling member, and a driving member. The screw shaft is fixed in a position, connected to the metallic disk, and threaded with the screw barrel. The screw barrel is connected to an external device and driven by the external device to perform a linear displacement along a length direction of the screw shaft relative to the screw shaft, so that the screw shaft drives the screw shaft and the metallic shaft. The controlling member has a permanent magnet and is disposed near to the metallic disk, so that the metallic disk generates a magnetic resistance to reduce the rotation speed of the metallic disk. The driving member drives the controlling member to move to change a distance between the controlling member and the metallic disk to adjust the magnitude of the magnetic resistance.




ac

ATTACHABLE HIGH-Mn STEEL BRAKE DISK

An attachable high-manganese steel brake disk includes a first disk member including air vents disposed radially therein to be spaced apart from each other, and a pair of second disk members installed to be attached to two surfaces of the first disk member and having a braking surface in contact with a brake pad. Between the first disk member and the second disk members, at least the second disk members are provided as high manganese steel members.




ac

MODIFIED ACTUATOR DESIGN TO IMPROVE LOAD DISTRIBUTION AND DAMPING

The present disclosure provides systems for mitigating brake vibration. In various embodiments, a brake force distribution arrangement may comprise: a member in operable communication with an actuator having at least two contact surfaces such that as one of the at least two contact surfaces moves in a direction of actuation of the actuator the other moves in a direction opposite to the direction of actuation of the actuator.




ac

SYSTEMS AND METHODS FOR FORMING A LAYER ONTO A SURFACE OF A SOLID SUBSTRATE AND PRODUCTS FORMED THEREBY

A method for forming a vehicular brake rotor involving loading a shaped metal substrate with a mixture of metal alloying components and ceramic particles in a dieheating the contents of the die while applying pressure to melt at least one of the metal components of the alloying mixture whereby to densify the contents of the die and form a ceramic particle-containing metal matrix composite coating on the metallic substrate; and cooling the resulting coated product.




ac

Surface Ventilated Disc Brake Rotor

A disc brake rotor including a hub portion and a brake disc is provided. The brake disc extends radially outward from the hub portion and includes an outboard disc face and an inboard disc face. A plurality of channels are disposed in the brake disc that are circumferentially spaced from one another. Any one channel in the plurality of channels is open to either the outboard disc face or the inboard disc face. The brake disc includes an outer ring and an inner ring that are circumferentially continuous and uninterrupted along at least the outboard disc face and the inboard disc face. The outer ring is radially spaced from the inner ring with the plurality of channels disposed radially between the outer ring and the inner ring. Advantageously, this arrangement increases shear strength of the brake disc while providing enhanced cooling.




ac

PISTON MANUFACTURING DEVICE, PISTON MANUFACTURING METHOD, PISTON AND DISC BRAKE

A piston manufacturing device includes a first forming device (42) configured to form an annular groove (61) in a piston (11), and a second forming device (52) configured to press an edge (15) of an opening (14) of the piston (11) toward other end side in an axial direction of the piston (11) and to form a thick section (65) extruded from an inner circumferential surface (12b) arranged between the edge (15) and the groove (61) toward an axial center side of the piston (11), wherein a recessed section (53) is formed at a portion of the second forming device (52) that is arranged to abut the edge (15) so that an inner circumferential side of the edge (15) is plastically deformed toward the other end side in an axial direction of the piston (11).




ac

Brake Rotor With Working Surface Inserts

A brake rotor assembly can include a structural part having a receiving surface and at least one friction surface parts having a contact surface. The friction surface part can be fixably attached to the receiving surface of the structural part such that the contact surface faces away from the receiving surface of the structural surface to form at least part of an annular braking surface arranged concentrically around an axis of rotation of the structural part.




ac

Back mixing device for pneumatic conveying systems

The present application provides a back mixing device for use with a pneumatically conveyed flow of solids having a varying flow rate. The back mixing device may include a nozzle, a chamber in communication with the nozzle, and an exit. The chamber may include an expanded area leading to a restriction such that the chamber creates a recirculation pattern in the flow of solids so as to smooth the varying flow rate though the back mixing device.




ac

Process for purifying solid carboniferous fuels prior to combustion, liquefaction or gasification using a rotary chamber

Solid carboniferous fuels contain varying quantities of moisture, mercury, chlorine, nitrogen, sulfur, heavy metals and other materials that attain vapor pressure at elevated temperatures. The cost effective removal of these degrading and sometimes hazardous materials is important to the further use of the fuel for combustion as a solid, liquid, or gas. The solid fuel is cut, shredded, ground or sieved to appropriate size, and heated in a chamber that can exclude oxygen and air thus preventing ignition. The unwanted materials are driven in the gaseous state and extracted for disposal. The solid fuel cleaned of pollutants exits the chamber and is cooled below ignition temperature prior to contact with oxygen. The solid fuel thus purified is more appropriate for combustion, liquefaction or gasification due to the reduced costs in use as a fuel or in the post combustion clean up.




ac

Methods for gasification of carbonaceous materials

The present disclosure is generally directed to process of gasification of carbonaceous materials to produce synthesis gas or syngas. The present disclosure provides improved methods of gasification comprising: adding one or more carbonaceous materials, adding a molecular oxygen-containing gas, adding a methane-containing gas and optionally adding water or steam into said gasifier. This disclosure is also directed to process of production of one or more alcohols from said syngas via fermentation or digestion in the presence of at least one microorganism.




ac

Hydrogen generator system with liquid interface

A hydrogen generator system and a fuel cell system including the hydrogen generator system are disclosed. The hydrogen generator system includes a replaceable cartridge that is removably contained within the system, and an external pump disposed outside the cartridge housing and configured to pump a fluid. The cartridge includes a cartridge housing, a liquid reservoir disposed within the cartridge housing and configured to contain a liquid including a reactant, a reaction area disposed within the cartridge housing and within which the reactant reacts to produce hydrogen gas, a liquid flow path disposed within the cartridge housing and through which the reactant liquid can flow from the liquid reservoir to the reaction area, and an internal pump disposed within the cartridge housing that can be operated by the external pump and is configured to transport the reactant liquid through the liquid flow path.




ac

Upgrading coal and other carbonaceous fuels using a lean fuel gas stream from a pyrolysis step

A method and apparatus for upgrading coal and other carbonaceous fuels includes subjecting the carbonaceous fuel to a pyrolyzing process, thereby forming upgraded carbonaceous fuel and a flow of lean fuel gases. Auxiliary fuel is combusted in an auxiliary fuel combustor to produce auxiliary fuel combustion gases, and the lean fuel gases are heated with the auxiliary fuel combustion gases. The heated lean fuel gases are combusted in a lean fuel combustor, thereby producing a gas stream of products of combustion, and at least a portion of the gas stream of products of combustion are directed to the pyrolyzer.




ac

Various methods and apparatuses for an ultra-high heat flux chemical reactor

Various processes and apparatus are discussed for an ultra-high heat flux chemical reactor. A thermal receiver and the reactor tubes are aligned to 1) absorb and re-emit radiant energy, 2) highly reflect radiant energy, and 3) any combination of these, to maintain an operational temperature of the enclosed ultra-high heat flux chemical reactor. Particles of biomass are gasified in the presence of a steam carrier gas and methane in a simultaneous steam reformation and steam biomass gasification reaction to produce reaction products that include hydrogen and carbon monoxide gas using the ultra-high heat flux thermal energy radiated from the inner wall and then into the multiple reactor tubes. The multiple reactor tubes and cavity walls of the receiver transfer energy primarily by radiation absorption and re-radiation, rather than by convection or conduction, to the reactants in the chemical reaction to drive the endothermic chemical reaction flowing in the reactor tubes.




ac

Solids circulation system and method for capture and conversion of reactive solids

A solids circulation system receives a gas stream containing char or other reacting solids from a first reactor. The solids circulation system includes a cyclone configured to receive the gas stream from the first reactor, a dipleg from the cyclone to a second reactor, and a riser from the second reactor which merges with the gas stream received by the cyclone. The second reactor has a dense fluid bed and converts the received materials to gaseous products. A conveying fluid transports a portion of the bed media from the second reactor through the riser to mix with the gas stream prior to cyclone entry. The bed media helps manipulate the solids that is received by the cyclone to facilitate flow of solids down the dipleg into the second reactor. The second reactor provides additional residence time, mixing and gas-solid contact for efficient conversion of char or reacting solids.




ac

Method for operating a reformer furnace and reforming plant

A method for producing a synthesis-gas product gas and a vapor stream includes catalytic steam reforming a hydrocarbonaceous feedstock in a steam reformer. The hot synthesis-gas product gas stream is cooled in a heat exchanger to form a cooled synthesis-gas product gas stream and a first partial vapor stream, which is supplied to the product vapor stream. The reforming furnace is operated so as to burn a burner feedstock in burners, cool a hot flue gas stream from the burners in a heat exchanger to form a cooled flue gas stream and a second partial vapor stream, and separate the cooled flue gas stream into a waste gas stream and a flue gas recirculation stream. The flow of the recirculated flue gas is increased with decreasing flow of the synthesis-gas product gas to obtain an approximately constant product vapor stream by increasing the second partial vapor stream.




ac

Reformer tube apparatus having variable wall thickness and associated method of manufacture

The present invention provides a reformer tube apparatus, including: an axially aligned tubular structure including a flange section, a top section, a middle section, and a bottom section; wherein the top section of the axially aligned tubular structure includes a first portion having a first wall thickness; wherein the top section of the axially aligned tubular structure includes a second portion having a second wall thickness; and wherein the top section of the axially aligned tubular structure includes a third portion having a transitioning wall thickness that joins the first portion to the second portion. The flange section includes a concentric flange disposed about a top portion thereof. The bottom section of the tubular structure includes a plurality of concentric wedge structures disposed about the interior thereof. The bottom section of the tubular structure also includes a recess disposed about the exterior thereof. The axially aligned tubular structure further includes a secondary flange section coupled to the flange section, wherein the secondary flange section includes a concentric flange disposed about a top portion thereof. Optionally, the reformer tube apparatus is disposed within a reformer used in a direct reduction process.




ac

Coiled reformer catalyst tube for compact reformer

A method for producing a chemical reaction is provided. This method includes providing at least two helical tubes, wherein the helical tubes comprise: a first axis and a second axis; wherein the first axis and the second axis are normal to each other; a cross-sectional shape of a predetermined contour; and an inlet end and an outlet end. The method includes reforming a first gas stream and a second gas stream into a third gas stream in the presence of a catalyst. The method includes surrounding a heat source with the helical tubes are, and operating the tube with an average catalyst temperature of above 500 F. An apparatus for producing a chemical reaction is also provided. This apparatus comprises at least two helical tubes, wherein the helical tubes comprise: a first axis and a second axis; wherein the first axis and the second axis are normal to each other; a cross-sectional shape of a predetermined contour; an inlet end and an outlet end, wherein the helical tubes contain a catalyst capable of reforming a first gas stream and a second gas stream into a third gas stream. The helical tubes are designed to surround a heat source, and the tube operates with an average catalyst temperature of above 500 F.




ac

M.2 INTERFACE MEMORY DEVICE AND M.2 INTERFACE CONNECTION SEAT INSERTEDLY PROVIDED THEREOF

The invention provides a M.2 interface memory device and a M.2 interface connection seat insertedly provided thereof. The M.2 interface memory device comprises a M.2 interface card and a housing provided with at least one guide groove. The M.2 interface connection seat is disposed on a circuit board, and comprises two arms and a base comprising a M.2 interface slot. At least one arm is provided with a guide rail. An opening direction of the M.2 interface slot is horizontal to a surface of the circuit board. When the M.2 interface card is inserted into the M.2 interface slot in a horizontal direction, the M.2 interface memory device will be fixed within the M.2 interface connection seat by embedding between the guide groove and the guide rail. Thus, M.2 interface memory devices of a variety of specification lengths are able to be inserted into the M.2 interface connection seat.




ac

TERMINAL ATTACHING/DETACHING DEVICE

A terminal attaching/detaching device includes a housing, an engaging member, and a movable member. The engaging member is configured to move in a first direction toward a terminal inserted in the housing to engage with the terminal, and is configured to move from the terminal inserted in the housing in a second direction to disengage from the terminal. The movable member is configured to move in concert with the engaging member in the moving process thereof in the first direction, and is configured to move the engaging member from the terminal inserted in the housing in the second direction, so that the engaging member is disengaged from the terminal.




ac

Linear edge connector with activator bar and contact load spring

An example apparatus for connecting linear edge cards includes a housing to hold at least one set of conductive contacts facing perpendicularly towards a mating plane. The apparatus further includes an activator bar coupled to the housing, the activator bar to hold two parts of the housing apart via two opposing normal forces. The apparatus also includes a contact load spring coupled to the housing, the contact load spring to apply two forces parallel to the direction of the conductive contacts and against the two opposing normal forces of the activator bar. The apparatus further includes an ejector spring coupled to the contact load spring and the activator bar. The ejector spring is to apply a force perpendicular to the two opposing normal forces of the activator bar and in a direction of an opening of the housing.




ac

ELECTRICAL RECEPTACLE CONNECTOR

An electrical receptacle connector includes a metallic shell, an insulated housing, first receptacle terminals, second receptacle terminals, first glue recess, and a first texture region. The metallic shell circularly encloses the insulated housing. The first and second receptacle terminals are held in the insulated housing. The first texture region is annularly formed on an inner wall of the metallic shell and corresponds to a periphery of the outer wall of the insulated housing. Therefore, the sealing member can attach onto the first texture region efficiently. Therefore, the sealing member does not overflow to the front portion of the receptacle cavity, and the inner gap can be sealed by the sealing member properly. Hence, the first texture region allows the sealing member to attach onto the inner wall of the shell body, and the sealing member can cover the inner gap completely to provide a reliable waterproof performance.




ac

Shock and Vibration Resistant Bulkhead Connector with Pliable Contacts

A high pressure and temperature, hermetically sealed bulkhead connector with pin and socket contacts for use in logging tools is described. The bulkhead connector comprises (a) one or more contact(s) placed within one or more channels wherein the channels provide a clearance path between contact(s) and bulkhead body and travel at least a partial longitudinal distance between proximal and distal ends. The contact(s) reside in the channel(s) and include at least; an optional movement limiter section, one central elongated section, and one fixed section where the contact(s) is attached to the bulkhead body at the distal end. The body correctly positions respective ends of the contact so that the body secures contact(s) to be parallel to each other and the contact(s) have terminal ends for connection. This arrangement provides at least one pivotable, pliable, free floating contact extending away from the fixed distal end of the bulkhead body.




ac

ELECTRONIC DEVICE AND METHOD FOR MANUFACTURING THE SAME

Provided is an electronic device that is highly resistant to a water-soluble grinding oil and a method for manufacturing the same. An electronic device includes a main body and a cable including a lead wire, an insulating portion, and an outer coat, a first sealing portion that covers the insulating portion, and a second sealing portion that seals the first sealing portion, the insulating portion is made of a material that is more resistant to a water-soluble grinding oil than the outer coat is, and the first sealing portion is made of a material that has higher adherence to the insulating portion than that of the second sealing portion does.




ac

CONNECTOR AND CONTACT

A connector includes a housing attached to a board; a ground terminal including a ground base disposed in the housing, and a first ground connection part extending from the ground base toward a first end of the housing and to be connected to a ground line of a coaxial cable; and a signal terminal including a signal base that is held in the housing and surrounded by the ground base while being insulated from the ground base, and a first signal connection part extending from the signal base toward the first end of the housing and to be connected to a signal line of the coaxial cable. The ground terminal and the signal terminal are configured to elastically bend at a second end of the housing when the housing is attached to the board.




ac

Polycrystalline diamond compact

In an embodiment, a polycrystalline diamond compact includes a substrate and a preformed polycrystalline diamond table having an upper surface, an interfacial surface, and at least one side surface extending therebetween. The interfacial surface of the polycrystalline diamond table is bonded to the substrate. The polycrystalline diamond table includes bonded diamond grains defining interstitial regions. The polycrystalline diamond table includes a first region extending inwardly from at least a portion of the upper surface and at least a portion of the at least one side surface. The first region spaced from the interfacial surface. The polycrystalline diamond table includes at least a second region extending inwardly from the interfacial surface to the upper surface. The first region includes at least a first infiltrant disposed interstitially between the bonded diamond grains thereof. The second region includes at least a second infiltrant disposed interstitially between the bonded diamond grains thereof.




ac

Polycrystalline diamond compact with increased impact resistance

A polycrystalline diamond (PCD) with diamond grains includes a first zone of the diamond grains and a second zone of the diamond grains. The first zone forms a working surface and a first catalyzing material is disposed within voids of the diamond grains in the first zone. A second catalyzing material is bonded to the diamond grains disposed in the second zone. The first catalyzing material in the first zone is connected to the diamond grains disposed in the first zone less intimately than the second catalyzing material is bonded to the diamond grains in the second zone.




ac

High porosity abrasive articles and methods of manufacturing same

An abrasive article includes a polymer matrix and abrasive grains dispersed in the polymer matrix, wherein the abrasive article has a void volume of at least 50%. The polymer matrix is polymerized from a monomer including at least one double bond.




ac

Plastic soft composition for polishing and for surface protective material application

A plastic soft composition is formed of soft base material constantly provided with plasticity, porous fine particles for polishing contained in the base material, and the like, and a polishing process and a coating process are performed to a painted surface and the like using the plastic soft composition. The fine particles for polishing are impregnated with a coating agent (a surface protective agent) added with an activator which is emulsified by contact with water, and the coating agent is held in concave portions formed in the fine particles. Both polishing work and coating work are achieved by sliding the plastic soft composition on a painted surface by a palm pressure of a user.




ac

Superabrasive cutting element and manufacturing method with high degree of control of distribution and crystallographic orientation of the micro cutting edges

An abrasive element comprises a body of crystalline abrasive material. The body has an array of cutting elements formed of crystalline abrasive material which projects from a surface of the body. The shape, size and form of the projections is controlled in the production process. The body may be a natural or synthetic crystal. The body may be a film formed by deposition. The body may be diamond or cubic boron nitride. The body may be monocrystalline or polycrystalline. The projections may be aligned along a crystallographic plane or planes.




ac

Methods of fabricating a polycrystalline diamond body with a sintering aid/infiltrant at least saturated with non-diamond carbon and resultant products such as compacts

Embodiments of the invention relate to methods of fabricating a polycrystalline diamond compacts and applications for such polycrystalline diamond compacts. In an embodiment, a method of fabricating a polycrystalline diamond body includes mechanically milling non-diamond carbon and a sintering aid material for a time and aggressiveness sufficient to form a plurality of carbon-saturated sintering aid particles and sintering a plurality of diamond particles in the presence of the plurality of carbon-saturated sintering aid particles to form the polycrystalline diamond body.




ac

Polishing pad and manufacturing method therefor

Provided are a polishing pad which remedies the problem of scratches occurring when a conventional hard (dry) polishing pad is used, which is excellent in polishing rate and polishing uniformity, and which can be used for not only primary polishing but also finish polishing, and a manufacturing method therefor. The polishing pad is a polishing pad for polishing a semiconductor device, comprising a polishing layer having a polyurethane-polyurea resin foam containing substantially spherical cells, wherein the polyurethane-polyurea resin foam has a Young's modulus E in a range from 450 to 30000 kPa, and a density D in a range from 0.30 to 0.60 g/cm3.




ac

Methods for orienting superabrasive particles on a surface and associated tools

Methods of making a superabrasive tool precursor are disclosed, along with such precursors and associated tools. Particularly, methods are disclosed for orienting superabrasive particles in a viscous binding material in order to provide tools based thereupon and having desired performance characteristics.




ac

Polycrystalline diamond compact including a polycrystalline diamond table with a thermally-stable region having at least one low-carbon-solubility material and applications therefor

Embodiments of the invention relate to polycrystalline diamond compacts (“PDCs”) comprising a polycrystalline diamond (“PCD”) table including a thermally-stable region having at least one low-carbon-solubility material disposed interstitially between bonded diamond grains thereof, and methods of fabricating such PDCs. In an embodiment, a PDC includes a substrate, and a PCD table bonded to the substrate. The PCD table includes a plurality of diamond grains exhibiting diamond-to-diamond bonding therebetween and defining a plurality of interstitial regions. The PCD table further includes at least one low-carbon-solubility material disposed in at least a portion of the plurality of interstitial regions. The at least one low-carbon-solubility material exhibits a melting temperature of about 1300° C. or less and a bulk modulus at 20° C. of less than about 150 GPa.




ac

Shearing die and method for manufacturing the same

The present invention provides a shearing die having longer life and a method for manufacturing the same. The shearing die includes a pair of substrates, at least one of which has a hard film formed by an arc ion plating method and located at least on a region of a curved surface and on an adjacent region from the end part of the curved surface on the side facing to the surface of the sheet or plate material to 300 μm along the surface of the substrate. The hard film comprises Al and one or more of Ti and Cr, and has a thickness of 1 to 5 μm, such that a number of metal particles having a diameter of 20 μm or more, which are present on a line segment having a length of 10 mm on a surface of the hard film, is 2 or less.




ac

Polycrystalline diamond compact

Embodiments of the invention relate to polycrystalline diamond compacts (“PDCs”) and methods of fabricating such PDCs. In an embodiment, a PDC includes a substrate and a preformed polycrystalline diamond table including an interfacial surface bonded to the substrate and an opposing working surface. The preformed polycrystalline diamond table includes a proximal region extending from the interfacial surface to an intermediate location within the preformed polycrystalline diamond table that includes a metallic infiltrant infiltrated from the substrate, and a distal region extending from the working surface to the intermediate location that is substantially free of the metallic infiltrant. A boundary exists between the proximal and distal regions that has a nonplanar irregular profile characteristic of the metallic infiltrant having been infiltrated into the preformed polycrystalline diamond table.




ac

EDM cuttable, high cBN content solid PCBN compact

The present disclosure relates to cubic boron nitride (cBN) cutting elements that have high cBN content and that are cuttable by electric discharge machining (EDM). A cutting element according to an embodiment includes a self-sintered polycrystalline cubic boron nitride (PCBN) compact, having a first phase of cubic boron nitride (cBN) particles and a ceramic binder phase with titanium compounds. The first phase occupies greater than 80% by volume of the self-sintered PCBN compact. The self-sintered PCBN compact has an electrical conductivity sufficient to be cuttable by electrical discharge machining.




ac

EDM cuttable, high CBN content solid PCBN compact

The present disclosure relates to cubic boron nitride (cBN) cutting elements that have high cBN content and that are cuttable by electric discharge machining (EDM). A cutting element according to an embodiment includes a self-sintered polycrystalline cubic boron nitride (PCBN) compact, having a first phase of cubic boron nitride (cBN) particles and a ceramic binder phase with titanium compounds. The first phase occupies greater than 80% by volume of the self-sintered PCBN compact. The self-sintered PCBN compact has an electrical conductivity sufficient to be cuttable by electrical discharge machining.




ac

Methods of forming polycrystalline compacts

Methods of forming a polycrystalline compact for use in an earth-boring tool include sintering a plurality of hard particles with catalyst material to form a polycrystalline material that includes a plurality of inter-bonded particles of hard material integrally formed with the catalyst material and introducing at least a portion of the polycrystalline material to a reactive material to remove at least a portion of the catalyst material contained within the polycrystalline material. The reactive material may include at least one of a molten glass, an ionic compound, a leaching liquor, and a chemical plasma. The reactive material may be introduced to the polycrystalline material at a temperature of greater than or equal to a melting point thereof.




ac

Method of manufacturing grooved chemical mechanical polishing layers

A method of manufacturing grooved polishing layers for use in chemical mechanical polishing pads is provided, wherein the formation of defects in the polishing layers are minimized.




ac

HYBRID MAGNETIC-RADAR DETECTOR FOR SPACE MANAGEMENT

Methods and systems for detection of an occupancy status of a space monitored by a system (100) are described herein. The method comprises detecting a magnetic field value at the space by a magnetic field sensor (210) of a sensing device (104). The detected magnetic field value with a reference magnetic field value, to determine a magnetic occupancy status (MOS) of the space. The MOS is indicative of the change in the occupancy status of the space. The change in the occupancy status is indicative of one of a change from empty to occupied occupancy status, and a change from occupied to empty occupancy status. Further, when the MOS indicates the change in the occupancy status of the space, a radar sensor (212) of the sensing device (104) is activated to determine a radar occupancy status (ROS) by generating at least one radar reading from the radar sensor (212). The ROS is indicative of the change in the occupancy status of the space. Thereafter, the change in the occupancy status of the space is established when the ROS indicating the change in the occupancy status of the space is in agreement with the MOS. Further, the established change of the occupancy status in the space is communicated to a central unit (102) of the system (100).




ac

DUAL-POLARIZED, DUAL-BAND, COMPACT BEAM FORMING NETWORK

A spacecraft communications payload includes a beam forming network (BFN), wherein the BFN includes a first feed waveguide and a first set of branch waveguides, each branch waveguide in the first set operating in a frequency band having a characteristic waveguide wavelength λg1. A proximal portion of the first set of branch waveguides is communicatively coupled with the first feed waveguide. A distal portion of the first set of branch waveguides is communicatively coupled by way of an array of slots with a plurality of radiating elements. A separation distance between adjacent slots in the array is approximately equal to λg, and the array of slots is configured as a honeycomb-like triaxial lattice. In some implementations, a compact BFN may be configured to simultaneously operate at two different polarizations (“dual-polarized”) and/or frequency bands (“dual-band”).




ac

DIRECTIONAL ANTENNA WITH SIGNAL STRENGTH FEEDBACK AND METHODS

Disclosed are systems and methods for improving the quality and strength of a wireless signal connecting a mobile station and a base station, in situations where the mobile station is able to utilize a directional antenna. The system for improving system quality comprise, for example, a directional antenna; an antenna power level detector which detects a signal strength; a signal inverter wherein the signal inverter generates a conditioned signal from the detected signal strength; an indicator wherein the indicator provides an indicator of a signal quality level from the detected signal strength; a reorientation decision logic wherein the reorientation decision logic communicates an instruction for movement of the directional antenna, wherein the detected signal strength is correlated to a projected orientation of the directional antenna at a time the signal strength is detected, and further wherein an antenna orientation control loop communicates a reorientation instruction for the directional antenna.




ac

DETERMINING A TOPOLOGY OF THE SURFACE OF A MATERIAL FILLED INTO A CONTAINER

A fill level measurement device for determining a topology of a filling material surface in a container including an antenna apparatus, a receiver and control circuitry. An emission angle of the antenna apparatus and a spatial position of the antenna apparatus relative to the filling material surface is settable by the control circuitry. A resultant emission direction of the fill level measurement device is changeable by the control circuitry by controlling a position of the antenna apparatus and by controlling an emission and/or receiving angle of the antenna apparatus.




ac

Final fabrication and calibration steps for hierarchically elaborated phased-array antenna and subarray manufacturing process

A process writes phase shift error correction values into a phased-array antenna to normalize a range of manufacturing variances. An axial ratio is determined for an antenna weight vector (AWV) by making multiple measurements with the horn of a test antenna mechanically rotating from 0 to 180 degree or with dual polarization test antenna. For calibration of the whole array, each subarray is treated in the same fashion as equivalent to an antenna element in the subarray calibration. The subarray is electronically rotated as a whole (all elements rotated by the same phase shift value) from 0 to 360 degree during the full array calibration. Due to small power variation among AWVs, calibration solely by REV results fail to consistently converge to resolution. Accordingly, the apparatus measures and compares axial ratios. During final fabrication, the apparatus programs an AWV with best axial ratio into each non-transitory array element.




ac

Assay for plant root pathogen activity

A method for improving the sensitivity of an assay to determine the pathogenicity of a plant root pathogen using a soil amendment is presented. The method involves growing the plant root in the presence of a soil amendment after exposure of the plant root to the pathogen. A method of breeding plants is also provided.




ac

Multi-functional furniture-accessory system

A central housing in a generally rectilinear configuration. The central housing has a horizontal open top, a horizontal open bottom and side walls. A horizontal lower divider panel is between the top and the bottom. Lateral openings in the housing are located in the lower section of the upstanding side walls adjacent to the bottom extent. A plurality of interchangeable upper components is chosen from the class including a cover having seat and table top on the top and bottom of the planar surfaces, an ice chest a large planter, an upper horizontal divider panel and an ice chest. The upper components are adapted to be selectively positioned on the open top and depend into the upper component. A plurality of lower components is chosen from the class including doors and casters. A lateral opening is formed in the housing adjacent to the bottom.




ac

Substituted cellulose acetates and uses thereof

The present invention relates to substituted cellulose acetates and methods of use thereof. One embodiment of the present invention provides a coating having a substituted cellulose acetate having a polar substituent that has an oxygen atom covalently bonded to a nonmetal selected from the group of sulfur, phosphorus, and boron; wherein the nonmetal is present in at least about 0.01% by weight of the substituted cellulose acetate.




ac

Injection-molded planter having undercuts and process for manufacturing

A planter for holding a plant includes a container having an open upper end. The container has side walls extending downward from the upper end and tapering inward to a lower end. A base at the lower end of the container has a diameter smaller than the diameter of the upper end. A circumferential ring surrounds the lower end of the container. The circumferential ring has an upper edge that extends outward from the container by a distance such that removal of the container and ring from a mold as a single unit would be inhibited. Accordingly, the container and the circumferential ring are molded from a thermoplastic material as separate components. The circumferential ring fits around the lower end of the container and is held in place by a mechanical interlock between the container and the ring.




ac

ELECTROSTATIC FLUID DELIVERY BACKPACK SYSTEM

An electrostatic fluid delivery system is configured to deliver fluid, such as a disinfectant fluid, onto a surface by electrically charging the fluid and forming the fluid into a mist, fog, plume, or spray that can be directed onto a surface, such as a surface to be cleaned. The system atomizes the fluid using a high-pressure air stream and passes the fluid through an electrode inside a nozzle assembly to charge, such as negatively charge, droplets of the atomized fluid. The system uses a unique nozzle design that is configured to optimally atomize the fluid into various sized droplets.




ac

CONTACTING TYPE INFILTRATION GROOVE FOR PHOTORESIST COATING EQUIPMENT

The present invention provides a contacting type infiltration groove for photoresist coating equipment, comprises a loading main body and a sprinkler head. A spray nozzle is provided at the end of the sprinkler head, wherein, a limiting component is additional clamped at the end of the sprinkler head to make only the spray nozzle of the sprinkler head dip into the solvent in the loading main body. The sprinkler head can be hold up by the limiting component to separate the non-spray nozzle from the solvent so as to avoid the solvent contacting on the surface of the non-spray nozzle part. The contacting surface of the sprinkler head is setting on the top of the spray nozzle to make them adhere seamlessly together.