for

Method for operating control equipment of a resonance circuit and control equipment

The invention relates to a method for operating control equipment (1) of a resonance circuit (2), wherein the control equipment (1) comprises at least two circuit elements (8, 9) connected in series, in particular each comprising a recovery diode (13, 14) connected in parallel, between which a connection (6) of the resonance circuit (2) is connected. According to the invention, the circuit elements (8, 9) are actuated as a function of the voltage detected at the connection (6). The invention further relates to control equipment (1) of a resonance circuit (2).




for

Digital phase locked loop having insensitive jitter characteristic for operating circumstances

Disclosed are a phase locked loop (PLL) of a digital scheme and a method thereof. More specifically, disclosed are a digital phase locked loop having a time-to-digital converter (TDC), a digital loop filter (DLF), and a digitally controlled oscillator (DCO), and that is designed to have a constant jitter characteristic at all times even though an operating condition of a circuit varies according to a process, voltage, temperature (PVT) change, and a method thereof.




for

Variability and aging sensor for integrated circuits

A ring-oscillator-based on-chip sensor (OCS) includes a substrate having a semiconductor surface upon which the OCS is formed. The OCS includes an odd number of digital logic stages formed in and on the semiconductor surface including a first stage and a last stage each including at least one NOR gate including a first gate stack and/or a NAND gate including a second gate stack. A feedback connection is from an output of the last stage to an input of the first stage. At least one discharge path including at least a first p-channel metal-oxide semiconductor (PMOS) device is coupled between the first gate stack and a ground pad, and/or at least one charge path including at least a first n-channel metal-oxide semiconductor (NMOS) device is coupled between the second gate stack a power supply pad.




for

Method for varying oscillation frequency of high frequency oscillator

The switching element is provided in a state of being electromagnetically coupled to the cavity resonator of the high frequency oscillator; the bias voltage applying terminal is connected to one electrode of the switching element; another electrode of the switching element is electrically connected to the cavity resonator (the anode shell in FIG. 1); the metal plate having a size enough for reflecting an electric wave to be transmitted before and after the switching element in a high-frequency manner is provided at any one end of the switching element; and by applying a bias voltage to the switching element and varying that, a reactance of the switching element is changed and a resonance frequency of the cavity resonator is varied. By this method, an oscillation frequency can be varied greatly relative to a small change in a bias voltage.




for

Thickness shear mode resonator sensors and methods of forming a plurality of resonator sensors

Arrays of resonator sensors include an active wafer array comprising a plurality of active wafers, a first end cap array coupled to a first side of the active wafer array, and a second end cap array coupled to a second side of the active wafer array. Thickness shear mode resonator sensors may include an active wafer coupled to a first end cap and a second end cap. Methods of forming a plurality of resonator sensors include forming a plurality of active wafer locations and separating the active wafer locations to form a plurality of discrete resonator sensors. Thickness shear mode resonator sensors may be produced by such methods.




for

Triple offset butterfly valve and rotary for severe services

This invention relates to a novel rotary control valve with new joint methods and flow control mechanisms, inline-reparability and fully metal seals more particularly to a triple offset butterfly valve or ball valve with those features used for on-off and flow controlling under multiple extreme conditions or in severe services; such as the integrated gasification combined cycle under high temperature and pressure, Fluid Catalytic Cracking under high temperature over 1200 F with hard diamond like catalytic particles, shale fracking process under extreme high pressure and high velocity fluid with solid particles and corrosive additives and other critical applications for products life lasting 5 to 30 years like deepsea flow control systems and nuclear power plants and for the applications of millions cycles like jet or rocket turbine engine fuel delivery systems with high velocity fuel fluid mixed with highly oxidative gas under temperature 1365 F.




for

Assembly structure of electronic control unit and coil assembly of solenoid valve for electronic brake system

An assembly structure of an electronic control unit and a coil assembly of a solenoid valve for an electronic brake system connected to the electronic control unit having a printed circuit board and applying power to the solenoid valve. The coil assembly is penetrated to allow an upper portion of the solenoid valve to be fitted thereinto, and includes a cylindrical bobbin provided with a coil and a coil case. The electronic control unit is provided with a housing having an insertion groove and joined to the hydraulic control unit, the printed circuit board being disposed spaced apart from the coil assembly, and the housing is provided with an elastic member having one end contacting the printed circuit board and the other end contacting the coil case. The elastic member is configured with a coil spring to produce different elastic forces.




for

Outlet valve for an airplane

An outflow valve (10) for an aircraft has a frame (12) for arrangement in an opening (14) of an outer shell (16) of the aircraft, a first flap (18) pivotably arranged in the frame (12) for controlling a flow cross-section of at least one first inflow opening (24) and at least one outflow opening (15). To achieve a simplified construction of the ventilation system of the aircraft, the outflow valve (10) has a second inflow opening (26) configured to be closable by means of a drivable adjustable member (28).




for

Flush adaptor for use with a valve fitment assembly for cleaning of the assembly

A flush adaptor for use with a valve fitment assembly for dispensing liquids from a container; wherein the flush adaptor comprises an outer ring-collar; a flange with an edge molded to the bottom of the outer ring-collar; an interior ring-collar adjacent to the outer ring-collar; a ridge molded in the interior ring-collar; a seat molded onto the interior ring-collar and a pin molded into the interior ring-collar which keeps the valve in an open position; and a hollow tube molded into the adaptor to allow the flow of liquid through the adaptor and into the fitment assembly; whereby the flush adaptor allows for cleaning of the assembly and any tubes connected thereto.




for

Method for operating a fluid valve via an oscillating valve motion

In a method for operating a fluid valve for controlling or regulating a fluid, having at least one movable valve component is displaceable with the aid of at least one electrical actuating signal which contains at least one first actuating signal portion which causes an oscillating valve motion of the valve component. Pressure oscillations generated in the fluid due to the oscillating valve motion are detected, and are used for regulation of the oscillating valve motion caused by the first actuating signal portion.




for

Pressure relief/drain valve for concrete pumpers

Pressure relief/drainage valve for a concrete pumper having a valve body with an axially extending passageway through which concrete flowing in a pumping line passes, an outlet port in a side wall of the passageway, and a valve member which prevents concrete from passing through the port when the valve is a closed position and permits concrete to discharge through the outlet port when the valve is in an open position.




for

Filler assembly for a valve

A filler assembly is mounted in an axial hole of a cap of a valve. The filler assembly includes at least one first filler and at least one second filler stacked in a longitudinal direction. A valve rod received in the axial hole extends through the at least one first filler and the at least one second filler. At least one of two mutually abutting faces respectively of the at least one first filler and the at least one second filler is at a non-parallel angle to a radial direction perpendicular to the longitudinal direction. If one of the at least one first filler and the at least one second filler is subjected to a pressing force in the longitudinal direction, at least one of the at least one first filler and the at least one second filler is moved in the radial direction to press against the valve rod.




for

Active drain plug for high voltage battery applications

A drain plug assembly that has particular application for sealing a drain hole in a high voltage battery compartment on a vehicle. The plug assembly includes a plug that inserted into the drain hole. The plug assembly further includes a return spring coupled to the plug and causing the plug to be biased into the drain hole. The plug assembly also includes at least one shape memory alloy device coupled to the plug and a support structure. The SMA device receives an electrical current that causes the device to contract and move the plug out of the drain hole against the bias of the return spring.




for

Solenoid valve, in particular for slip-controlled motor vehicle braking systems

A solenoid valve, the magnet armature of which is designed to be movable relative to a first valve-closing element, for which purpose the first valve-closing element is accommodated telescopically in a coupling element attached to the magnet armature, wherein the coupling element is guided along the inner wall of a guide sleeve inserted in the valve housing in order to align the magnet armature precisely with the first valve-closing element in the direction of a second valve-closing element which is likewise accommodated in the guide sleeve.




for

Valve having reduced operating force and enhanced throttling capability

A flow control valve element has a generally spherical ball. An inlet is formed in the ball. An outlet is also formed in the ball, the outlet opposing the inlet. A hollowed-out portion extends between the inlet and the outlet. A pair of opposing flats are formed in the ball, the flats each having a first flat portion formed in an external portion of the ball and an opposing second flat portion formed in the hollowed-out portion of the ball.




for

System, method, and apparatus for utilizing a pumping cassette

The present invention involves, in some embodiments, systems and methods involving fluid handling apparatus for pumping fluid to and from a patient, which may include a reusable component and a disposable pumping cartridge. The reusable component may comprise a control chamber and a pressure transducer configured to measure a gas pressure associated with the control chamber, as well as a processor. The processor may be configured to supply the control chamber with a gas at a predetermined pressure, monitor the gas pressure associated within the control chamber with the pressure transducer over a predetermined period of time, and determine if the change in gas pressure associated within the control chamber exceeds a maximum allowable predetermined limit.




for

Method for operating a collection means for printed products

A method for operating a collection system for printed products includes drawing off the printed products from discharge device(s) disposed at corresponding discharge point(s) in the collection system. The printed products are deposited on a collection section during a cycle period of the discharge device(s) so as to form a bundle of printed products. The bundle is transferred to a subsequent conveying mechanism having receiving pockets. It is determined whether at least one missing printed product exists due to an incorrect drawing off from the discharge point(s). A repair process is initiated and controlled in which the at least one missing printed product is drawn off from the corresponding discharge point(s) at a time corresponding to a subsequent recurrent pocket-related cycle of the subsequent conveying mechanism in a subsequent cycle period of the discharge device(s). The at least one missing printed product is inserted in the relevant receiving pocket.




for

Method and device for removing at least one book block from and/or supplying at least one book block to a conveying section of a book production line

A method and device for the production of books, including: moving book blocks successively along a conveying section of a book production line; supplying a stack of book cases to the book production line; identifying a marking on each of the book blocks and the book cases; transmitting an identified marking on at least one book case to a machine control of the book production line; assigning a dataset stored in the machine control for a sequence of book cases to the supplied stack; determining a sequence in the machine control for book blocks positioned on the conveying section; comparing the dataset for the sequence of the book cases to the sequence of the book blocks; and removing and/or supplying at least one book block from or to the conveying section if the sequence of the book blocks deviates from the sequence of the book cases using the machine control.




for

Bundle of printed products and method for producing same

A method for producing a bundle composed of book blocks includes gathering a plurality of printed sheets to form respective book blocks. The plurality of the book blocks are positioned with the same orientation and respectively positioned on lower edges of the printed sheets. Respectively two adjacent book blocks are offset from one another parallel to the lower edges of the printed sheets and transverse to a height of the bundle to be formed, such that a side edge of one of the two book block projects relative to a side edge of the adjacent book block. Thereafter the offset book blocks are combined to form the bundle and the bundle is compressed to fix the offset position of the book blocks.




for

Method for operating a processing system, in which product units having different product characteristics are processed

A method for operating a processing system, in which product units of different formats are processed. The processing system contains a plurality of processing devices that are arranged one after the other in a processing line. In the event of a format changeover, certain component arrangements arranged in the processing system must be adapted to the new product format. In the event of an upcoming format change, a gap in the conveyed goods is generated while the conveying operation is maintained, wherein the gap in the conveyed goods runs through the processing system along the processing devices. As soon as the gap in the conveyed goods runs through a component arrangement to be adapted to the new format, the format is changed over at the component arrangement while the gap in the conveyed goods runs through the component arrangement.




for

Post-processing device and image forming apparatus

The post-processing device includes: a binding unit that forms a cut in a sheet stack and cuts a part of the sheet stack into a predetermined shape to form a tongue portion in the sheet stack, the tongue portion having a part where one end part of the tongue portion is not separated from the sheet stack, and binds the sheet stack by bending the tongue portion and inserting the other end part of the tongue portion into the cut; and a sheet stack transport unit that transports the sheet stack in an orientation such that the one end part of the tongue portion in the sheet stack bound by the binding unit is on a downstream side of the other end part of the tongue portion in the sheet stack transport direction.




for

Imaging apparatus and methods for bindery systems

Imaging apparatus and methods for bindery systems. An example apparatus disclosed herein includes a platform having a plurality of openings to provide suction through a surface of the platform and a first track that moves across the surface of the platform. The first track has a plurality of apertures to fluidly couple the suction to an upper surface of the first track.




for

Sheet processing apparatus and image forming system

A sheet processing apparatus 3 includes a position aligning section (61A, 61B), a holding section 53, and a processing section (38, 55). The position aligning section (61A, 61B) abuts the inner side or a fold of a sheet bundle (S2), which is formed by collecting a plurality of folded sheets (S1), to align the position of the folds of line plurality of folded sheets (S1). The holding section (53) holds the sheet bundle (S2) in which the position of the folds of the plurality of sheets (S1) has been aligned by the position aligning section (61A, 61B). The processing section (38, 55) performs a predetermined process on the sheet bundle (S2) held by the holding section 53.




for

Supply device for a machine for transversely cutting at least one strip of flexible material

A supply device (10) for a machine for transversely cutting two strips (11 and 12) of a flexible material, in particular a strip of paper, moving continuously, to produce separate stacks of documents cut transversely according to predetermined formats. The device comprises lower and upper driving mechanisms (13, 14) associated with the two strips (11, 12) of flexible material respectively, which each include a mechanically rotated first roller (13a, 14a) and a freely rotatable second bearing roller (13b and 14b). The driving mechanism is mounted on a frame (15) supported by a movable platform (16) which is rigidly connected to a linear actuator (17) arranged to be moved transversely with respect to the direction of movement of the strips (11 and 12). Optical reading cells (11a, 11b, 12a, 12b) define the operating modes of the driving servomotors (13b and 14b) and of the linear actuator (17).




for

Image forming apparatus with alignment unit

An image forming apparatus may include an image forming unit, a stacking unit, a control unit, and an alignment unit. The image forming unit forms an image on a recording material having a type. The stacking unit stacks the recording material on which the image formation is formed by the image forming unit. The control unit sets a predetermined number of sheets to a number that corresponds to the type of the recording material. The alignment unit aligns the recording material if the predetermined number of sheets of the recording material is stacked by the stacking unit.




for

Method for producing printed products consisting of at least three sub-products

In a first step, in a printed material web (1) moved in a feed direction, a first material web part (5) which is formed by a material web section (1a)is folded against the rest of the material web (6) that is formed from two material web portions (1b, 1c)).In the region of a connecting line (2b) extending between neighbouring material web sections (1b, 1c) the two material web parts (5,6) are connected to one another by a means of a bonding adhesive. In a subsequent step the material web (1) is folded again along a line (2b) extending between two neighbouring material web sections. (1b, 1c)All material web sections (1a, 1b, 1c) lie above one another. Subsequently, multi-page sub-products (11), the pages (12a, 12b, 12c) of which are connected to one another in the region of the spine (13) of the sub-product, are separated from the twice-folded material web (1). Finally, the sub-products (11) are placed on top of one another to form a stack (16) and are connected to one another in the region of the spine (13) thereof by means of a bonding adhesive.




for

Sheet processing apparatus and image forming system

According to an embodiment, there is provided a sheet processing apparatus includes a stacking unit that stacks a sheet conveyed thereto; a first alignment unit that aligns the sheet or a bundle of sheets stacked in the stacking unit in a sheet conveying direction; a second alignment unit that aligns the sheet or the bundle of sheets stacked in the stacking unit in a direction orthogonal to the sheet conveying direction; a pressing unit that presses the bundle of sheets at an end portion thereof on a predetermined one side; and a control unit that causes at least one of the first and second alignment units to execute an alignment operation during a press operation of the sheet or the bundle of sheets performed by the pressing unit.




for

Image forming apparatus

An image forming apparatus includes a main conveyance path 13, a main discharge roller 17, and a main stacking tray 19. The sorting discharge unit 20 includes a subsidiary conveyance path 22, a change-over mechanism 23, a subsidiary discharge roller 24 and a subsidiary stacking tray 26. The subsidiary discharge roller 24 is provided on the most downstream side of the subsidiary conveyance path 22. The subsidiary stacking tray 26 is arranged above the main stacking tray 19 and the transfer sheet P discharged from the subsidiary discharge roller 24 is stacked in the subsidiary stacking tray 26. A stacking concave portion 29 which expands a stackable area of the subsidiary stacking tray 26 is formed below the subsidiary discharge roller 24.




for

Method for operating a thread stitching machine

A method for operating a thread stitching machine for processing printed sheets to form book blocks includes providing at least one sewing station with an active connection to at least one stitching saddle and providing the at least one stitching saddle with an active connection to at least one transporting system. The printed sheets are supplied to the at least one stitching saddle, using the at least one transporting system, in at least one of a substantially vertical and a substantially horizontal plane relative to the at least one stitching saddle. At least the printed sheets in the substantially vertical plane are supplied directly onto the at least one stitching saddle or to a region of the at least one stitching saddle. The printed sheets are supplied to the at least one sewing station resting astride the at least one stitching saddle.




for

Sheet processing device and image forming system

A sheet processing device includes a clamp configured to clamp an edge portion of a sheet, the edge portion being on a side of an edge parallel to a direction in which the sheet has been conveyed; a first processing unit configured to perform a first process on the sheet at the side of the edge, the first processing unit being disposed at a first position; a second processing unit configured to perform a second process on the sheet at the side of the edge, the second processing unit being disposed at a second position that is different from the first position in a vertical direction; and a moving unit configured to move the clamp from the first position to the second position or vice versa so that the clamp moves on a loop passing through the first position and the second position.




for

Image forming apparatus, control method thereof and storage medium

This invention provides a technique of preventing a collision between an original document and a printing material on a conveyance path when an image forming apparatus executes both additional printing on the original document and printing on the printing material. In a case where both additional printing on an original document and printing on a printing material are executed, the image forming apparatus according to one aspect of the invention conveys a read original document to a transfer unit through a conveyance path commonly used for an original document and sheet, and prints an image to be added on the original document. After the original document is conveyed to the transfer unit through the conveyance path, the image forming apparatus feeds a sheet from a sheet feeding unit to the conveyance path, and performs copying on the sheet in the transfer unit.




for

Creasing device, image forming system, and creasing method

A creasing device forms a crease in a to-be-folded portion of a sheet. The creasing device includes a sheet-information reading unit that reads any one of sheet information and binding information; a determining unit that determines a surface, on which the crease is to be formed, of the sheet according to the one of the sheet information and the binding information read by the sheet-information reading unit; and a creasing unit that forms the crease on the surface determined by the determining unit.




for

Sheet post-processing apparatus, image forming apparatus and sheet post-processing method

According to one embodiment, a sheet post-processing apparatus includes a machine body, a first roller pair, a tray, a second roller pair, a driving unit, an inlet sensor, a receiving unit and a control unit. The inlet sensor is configured to detect presence or absence of the sheet in the first roller pair driven by the driving unit. The receiving unit is configured to receive, from an image forming apparatus, sheet length information in the sheet conveying direction of the sheet as a target to which the print job is applied. The control unit is configured to control the driving unit to rotate, if the sheet length information indicates special length and the inlet sensor detects a trailing end of the sheet, at least rollers of the second roller pair a predetermined number of times and stop the rollers, the second roller pair nipping the sheet.




for

Sheet binding apparatus using concave-convex members and image forming apparatus having same

A sheet binding apparatus which forms concavity and the convexity on a sheet bundle including a plurality of sheets in a thickness direction so as to bind the sheet bundle, the sheet binding apparatus includes: a pair of concave-convex members, each of which has concave-convex portion in the thickness direction of the sheet bundle and which forms the concavity and the convexity on the sheet bundle in the thickness direction while niping the sheet bundle therebetween; wherein in the pair of concave-convex members, one of the concave-convex members has a greater difference in height of the concave-convex portion than that of the other concave-convex member which engages with the above-described concave-convex member.




for

Relay apparatus and image forming system

Disclosed is an image forming system including: the relay apparatus; the image forming device which is connected to the first communication control unit of the relay apparatus and which acquires the sheet interval information of the downstream post-processing device through the first communication system; and the second post-processing device which is connected to the second communication control unit of the relay apparatus, the second post-processing device being compliant with the second communication system.




for

Sheet processing apparatus, method for controlling sheet processing apparatus, and storage medium

The present invention is directed to providing a mechanism for allowing a user to easily take out print products discharged onto a plurality of sheet discharge trays in the discharge order. A control method for controlling a sheet processing apparatus for performing control to discharge sheets onto a plurality of sheet discharge trays includes storing, in a storage unit, the discharge order in which sheets have been discharged onto equal to or more than two sheet discharge trays by executing a job, and performing, upon reception of a take-out instruction for taking out in the discharge order the sheets discharged by executing the job, processing for allowing a user to take out the sheets discharged onto the equal to or more than two sheet discharge trays, in the discharge order stored in the storage unit.




for

Relay apparatus and image forming system

Disclosed is an image forming system including: an image forming device to notify a downstream post-processing device of sheet information relating to a sheet on which an image is formed, before the sheet is discharged, and to notify the downstream post-processing device of set separation information indicating a final sheet of each set of document in synchronization with the sheet information relating to the final sheet of each set in case that a plurality of sets of document are printed, the image forming device being compliant with a first communication system; a post-processing device which is connected to a downstream of the image forming device and is compliant with a second communication system which is different from the first communication system; and the relay apparatus which is connected to the image forming device through the first communication system and is connected to the post-processing device through the second communication system.




for

Sheet processing apparatus, image forming system, and sheet binding method

A sheet processing apparatus includes a pair of squeezing members having a projection and a recess to engage each other, to squeeze a sheet bundle inserted therebetween in a direction of thickness of the sheet bundle, and a pressure applying unit to apply pressing force to the squeezing members to squeeze and bind the sheet bundle. The pressing force generated between the squeezing members by the pressure applying unit increases in strength as a relative distance between the squeezing members decreases.




for

Post-processing apparatus and image forming apparatus

A post-processing apparatus includes a processing tray, a conveyance portion, a staple unit, an operation portion, a mode switching portion, a cover, and an open/close detection portion. The staple unit, which has an automatic mode and a manual mode as processing modes for stapling processing, executes stapling processing for a paper sheet conveyed to the processing tray by the conveyance portion in the automatic mode, and executes stapling processing for a paper sheet stacked on the processing tray by a user in the manual mode. The cover is attached in an openable and closable manner so as to cover the operation portion when closed, and expose the operation portion when opened. While the open/close detection portion is detecting that the cover is opened, when the operation portion has received an operation for switching to the manual mode, the mode switching portion switches the automatic mode to the manual mode.




for

Sheet punching device and image forming system

In the invention, for a first sheet, regardless of the sheet size (width), a lateral registration detector is moved in a direction towards an edge face of the sheet from a home position to detect the edge face of the sheet. With lateral deviation in the sheet position corrected, punching is performed by a puncher. For the second and subsequent sheets, the lateral registration detector is moved in advance to near the edge face of the sheet with reference to the detected position of the sheet edge of the first sheet, and the edge face is detected at a given timing. With lateral deviation in the sheet position corrected, punching is performed by the puncher.




for

Sheet storing apparatus, post-processing apparatus and image forming system having the same

In a provided apparatus, an upper roller to be engaged with a sheet upper face and a lower roller to be engaged with a sheet lower face are arranged at a sheet discharging port in a manner capable of being pressure-contacted and being separated, the upper roller is formed with a large-diameter soft roll face and a small-diameter hard roll face, and a pressurization force of roller lifting-lowering means with which the upper roller is pressure-contacted to and is separated from the lower roller is switched to be high or low.




for

Image forming system and sheet transport apparatus and method

An image forming system includes the following elements. An image forming apparatus forms images on plural sheets sequentially transported with a spacing therebetween. A sheet transport apparatus includes a transport section which receives and transports the plural sheets farther downstream. The sheet transport apparatus supplies a different type of sheet from a different-type-of-sheet supply device, inserts it into the spacing, and transports the sheets. The sheet transport apparatus includes the following elements. A transport information obtaining unit obtains information concerning transporting of sheets. A different-type-of-sheet stop unit supplies the different type of sheet, on the basis of the information concerning transporting of sheets, and stops the different type of sheet at a position before the transport section. A different-type-of-sheet supply information output unit outputs information concerning the supply of the different type of sheet, the information being obtained regarding a standby state of the different type of sheet.




for

Sheet storing apparatus, post-processing apparatus and image forming system having the same

In a sheet storing apparatus of the present invention, a tailing end supporting member which temporarily supports a tailing end of a dropping sheet bundle is arranged between a discharging port of a processing tray to discharge the sheet bundle and the upmost sheet on a stack tray as being movable between an operating position above a sheet placement face and a waiting position outside the stack tray.




for

Sheet processing apparatus and image forming apparatus

A sheet processing apparatus includes a projection forming unit configured to form a projection on a sheet. The projection is formed in the vicinity of a binding portion of a sheet bundle. When a succeeding sheet bundle is discharged on the sheet bundle in which the projection has been formed on a top surface thereof, the succeeding sheet bundle is stacked by moving on the already stacked sheet bundle without being caught by the binding portion of the already stacked sheet bundle as an end of the succeeding sheet bundle is guided by the projection.




for

Sheet processing apparatus and image forming system

A sheet processing apparatus including a stacking tray that stacks sheets, a conveying member that conveys a sheet to the stacking tray and discharges the sheet bundle from the stacking tray, wherein the conveying member includes a conveying roller and a conveying belt stretched by a plurality of stretch rollers, and a sheet processor that performs predetermined processing to the sheet bundle. When the conveying member conveys the sheet to the stacking tray, a part of the conveying belt that is not wound on the stretch roller contacts the conveying roller by moving the conveying belt as such a nip for conveying the sheet is formed. When the conveying member discharges the sheet bundle from the stacking tray, a part of the conveying belt that is wound on the stretch roller contacts the conveying roller by moving the conveying belt so that a nip for conveying the sheet is formed.




for

Sheet processing apparatus and image forming system

A sheet processing apparatus includes: a folding processing unit that folds a sheet by reversely rotating a second conveying member in a condition in which the sheet is held by a first and the second conveying members; a calculating unit that calculates an amount of deflection of the sheet held by the first and second conveying members from timings at which the sheet is detected by first and second detecting units disposed upstream of the first conveying member and downstream of the second conveying member and a distance between disposed positions of the first and second detecting units; and a control unit that sets, from the calculated amount of deflection of the sheet, an amount of conveyance for the first conveying member in a direction opposite to a sheet conveying direction in a condition in which the sheet is held by the first and second conveying members.




for

Sheet storage apparatus and image formation system using the apparatus

To provide a sheet storage apparatus for enabling sheets that are carried out of an image formation apparatus or the like on the upstream side to be loaded and stored in a predetermined position with a correct posture neatly at high speed, a sheet discharge roller and a reverse roller spaced a distance are disposed in a sheet discharge outlet and a tray, a kick member is provided to be swingable in a vertical direction passing a sheet discharge path of a sheet discharged from the sheet discharge outlet, and a posture of the kick member is controlled by shift means. The shift means controls the kick member among a waiting posture retracted upward from the sheet discharge path, an engagement posture for imposing a load on the sheet to engage, and an actuation posture dropping onto the tray together with the sheet.




for

Machine and method for printing products and making cut-outs at the edges of the sheets

A puncher cylinder includes a puncher knife, the cylinder being arranged for cooperation with a paper web such that the cylinder when in use can be rolled longitudinally along and in contact with the paper web, punching holes in the paper web by way of the puncher knife. The holes are punched a longitudinal distance from each other essentially corresponding to the circumference of the cylinder. A system is further disclosed including the punching cylinder, as is a method utilizing the punching cylinder, and a newspaper partly produced by way of the punching cylinder.




for

Sheet processing apparatus with two image forming devices

A first discharging portion that discharges a sheet received from one of image forming apparatus and a second discharging portion discharges a sheet received from another image forming apparatus are disposed opposite each other to stack the sheets discharged in a common processing tray. A controller controls the first and second discharging portions when the sheets are continuously discharged by the first and second discharging portions, controls a timing when the sheets are discharged by the first discharging portion and the second discharging portion to the common processing tray such that a leading edge of the sheet discharged from one of the discharging portions abuts on a sheet surface in the downstream of a discharging direction below a leading edge of the sheet discharged from the other discharging portion.




for

Method of, and apparatus for, processing sheets of different formats

An apparatus for processing sheets of different formats, the apparatus including a feeding device that feed sheets of different formats in a feeding direction one behind the other, and at a certain conveying speed, at least two collecting drums disposed downstream of the feeding device, the at least two collecting drums having cylindrical lateral surfaces that rotate about an axis of rotation, securing means for temporarily securing the fed sheets on a circumference of the at least two collecting drums, a drive device that drives the collecting drums in rotation at a circumferential speed that corresponds to the conveying speed of the feeding device, and a sensing device for sensing the sheets of different formats moving past is arranged along the conveying path and senses the leading edge of the sheets of different formats, as seen in the feeding direction, or markings applied to the sheets of different formats.