em

Directional differentiability for supremum-type functionals: Statistical applications

Javier Cárcamo, Antonio Cuevas, Luis-Alberto Rodríguez.

Source: Bernoulli, Volume 26, Number 3, 2143--2175.

Abstract:
We show that various functionals related to the supremum of a real function defined on an arbitrary set or a measure space are Hadamard directionally differentiable. We specifically consider the supremum norm, the supremum, the infimum, and the amplitude of a function. The (usually non-linear) derivatives of these maps adopt simple expressions under suitable assumptions on the underlying space. As an application, we improve and extend to the multidimensional case the results in Raghavachari ( Ann. Statist. 1 (1973) 67–73) regarding the limiting distributions of Kolmogorov–Smirnov type statistics under the alternative hypothesis. Similar results are obtained for analogous statistics associated with copulas. We additionally solve an open problem about the Berk–Jones statistic proposed by Jager and Wellner (In A Festschrift for Herman Rubin (2004) 319–331 IMS). Finally, the asymptotic distribution of maximum mean discrepancies over Donsker classes of functions is derived.




em

Busemann functions and semi-infinite O’Connell–Yor polymers

Tom Alberts, Firas Rassoul-Agha, Mackenzie Simper.

Source: Bernoulli, Volume 26, Number 3, 1927--1955.

Abstract:
We prove that given any fixed asymptotic velocity, the finite length O’Connell–Yor polymer has an infinite length limit satisfying the law of large numbers with this velocity. By a Markovian property of the quenched polymer this reduces to showing the existence of Busemann functions : almost sure limits of ratios of random point-to-point partition functions. The key ingredients are the Burke property of the O’Connell–Yor polymer and a comparison lemma for the ratios of partition functions. We also show the existence of infinite length limits in the Brownian last passage percolation model.




em

Functional weak limit theorem for a local empirical process of non-stationary time series and its application

Ulrike Mayer, Henryk Zähle, Zhou Zhou.

Source: Bernoulli, Volume 26, Number 3, 1891--1911.

Abstract:
We derive a functional weak limit theorem for a local empirical process of a wide class of piece-wise locally stationary (PLS) time series. The latter result is applied to derive the asymptotics of weighted empirical quantiles and weighted V-statistics of non-stationary time series. The class of admissible underlying time series is illustrated by means of PLS linear processes and PLS ARCH processes.




em

Logarithmic Sobolev inequalities for finite spin systems and applications

Holger Sambale, Arthur Sinulis.

Source: Bernoulli, Volume 26, Number 3, 1863--1890.

Abstract:
We derive sufficient conditions for a probability measure on a finite product space (a spin system ) to satisfy a (modified) logarithmic Sobolev inequality. We establish these conditions for various examples, such as the (vertex-weighted) exponential random graph model, the random coloring and the hard-core model with fugacity. This leads to two separate branches of applications. The first branch is given by mixing time estimates of the Glauber dynamics. The proofs do not rely on coupling arguments, but instead use functional inequalities. As a byproduct, this also yields exponential decay of the relative entropy along the Glauber semigroup. Secondly, we investigate the concentration of measure phenomenon (particularly of higher order) for these spin systems. We show the effect of better concentration properties by centering not around the mean, but around a stochastic term in the exponential random graph model. From there, one can deduce a central limit theorem for the number of triangles from the CLT of the edge count. In the Erdős–Rényi model the first-order approximation leads to a quantification and a proof of a central limit theorem for subgraph counts.




em

On the eigenproblem for Gaussian bridges

Pavel Chigansky, Marina Kleptsyna, Dmytro Marushkevych.

Source: Bernoulli, Volume 26, Number 3, 1706--1726.

Abstract:
Spectral decomposition of the covariance operator is one of the main building blocks in the theory and applications of Gaussian processes. Unfortunately, it is notoriously hard to derive in a closed form. In this paper, we consider the eigenproblem for Gaussian bridges. Given a base process, its bridge is obtained by conditioning the trajectories to start and terminate at the given points. What can be said about the spectrum of a bridge, given the spectrum of its base process? We show how this question can be answered asymptotically for a family of processes, including the fractional Brownian motion.




em

On the probability distribution of the local times of diagonally operator-self-similar Gaussian fields with stationary increments

Kamran Kalbasi, Thomas Mountford.

Source: Bernoulli, Volume 26, Number 2, 1504--1534.

Abstract:
In this paper, we study the local times of vector-valued Gaussian fields that are ‘diagonally operator-self-similar’ and whose increments are stationary. Denoting the local time of such a Gaussian field around the spatial origin and over the temporal unit hypercube by $Z$, we show that there exists $lambdain(0,1)$ such that under some quite weak conditions, $lim_{n ightarrow+infty}frac{sqrt[n]{mathbb{E}(Z^{n})}}{n^{lambda}}$ and $lim_{x ightarrow+infty}frac{-logmathbb{P}(Z>x)}{x^{frac{1}{lambda}}}$ both exist and are strictly positive (possibly $+infty$). Moreover, we show that if the underlying Gaussian field is ‘strongly locally nondeterministic’, the above limits will be finite as well. These results are then applied to establish similar statements for the intersection local times of diagonally operator-self-similar Gaussian fields with stationary increments.




em

Limit theorems for long-memory flows on Wiener chaos

Shuyang Bai, Murad S. Taqqu.

Source: Bernoulli, Volume 26, Number 2, 1473--1503.

Abstract:
We consider a long-memory stationary process, defined not through a moving average type structure, but by a flow generated by a measure-preserving transform and by a multiple Wiener–Itô integral. The flow is described using a notion of mixing for infinite-measure spaces introduced by Krickeberg (In Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 2 (1967) 431–446 Univ. California Press). Depending on the interplay between the spreading rate of the flow and the order of the multiple integral, one can recover known central or non-central limit theorems, and also obtain joint convergence of multiple integrals of different orders.




em

The moduli of non-differentiability for Gaussian random fields with stationary increments

Wensheng Wang, Zhonggen Su, Yimin Xiao.

Source: Bernoulli, Volume 26, Number 2, 1410--1430.

Abstract:
We establish the exact moduli of non-differentiability of Gaussian random fields with stationary increments. As an application of the result, we prove that the uniform Hölder condition for the maximum local times of Gaussian random fields with stationary increments obtained in Xiao (1997) is optimal. These results are applicable to fractional Riesz–Bessel processes and stationary Gaussian random fields in the Matérn and Cauchy classes.




em

Rates of convergence in de Finetti’s representation theorem, and Hausdorff moment problem

Emanuele Dolera, Stefano Favaro.

Source: Bernoulli, Volume 26, Number 2, 1294--1322.

Abstract:
Given a sequence ${X_{n}}_{ngeq 1}$ of exchangeable Bernoulli random variables, the celebrated de Finetti representation theorem states that $frac{1}{n}sum_{i=1}^{n}X_{i}stackrel{a.s.}{longrightarrow }Y$ for a suitable random variable $Y:Omega ightarrow [0,1]$ satisfying $mathsf{P}[X_{1}=x_{1},dots ,X_{n}=x_{n}|Y]=Y^{sum_{i=1}^{n}x_{i}}(1-Y)^{n-sum_{i=1}^{n}x_{i}}$. In this paper, we study the rate of convergence in law of $frac{1}{n}sum_{i=1}^{n}X_{i}$ to $Y$ under the Kolmogorov distance. After showing that a rate of the type of $1/n^{alpha }$ can be obtained for any index $alpha in (0,1]$, we find a sufficient condition on the distribution of $Y$ for the achievement of the optimal rate of convergence, that is $1/n$. Besides extending and strengthening recent results under the weaker Wasserstein distance, our main result weakens the regularity hypotheses on $Y$ in the context of the Hausdorff moment problem.




em

Interacting reinforced stochastic processes: Statistical inference based on the weighted empirical means

Giacomo Aletti, Irene Crimaldi, Andrea Ghiglietti.

Source: Bernoulli, Volume 26, Number 2, 1098--1138.

Abstract:
This work deals with a system of interacting reinforced stochastic processes , where each process $X^{j}=(X_{n,j})_{n}$ is located at a vertex $j$ of a finite weighted directed graph, and it can be interpreted as the sequence of “actions” adopted by an agent $j$ of the network. The interaction among the dynamics of these processes depends on the weighted adjacency matrix $W$ associated to the underlying graph: indeed, the probability that an agent $j$ chooses a certain action depends on its personal “inclination” $Z_{n,j}$ and on the inclinations $Z_{n,h}$, with $h eq j$, of the other agents according to the entries of $W$. The best known example of reinforced stochastic process is the Pólya urn. The present paper focuses on the weighted empirical means $N_{n,j}=sum_{k=1}^{n}q_{n,k}X_{k,j}$, since, for example, the current experience is more important than the past one in reinforced learning. Their almost sure synchronization and some central limit theorems in the sense of stable convergence are proven. The new approach with weighted means highlights the key points in proving some recent results for the personal inclinations $Z^{j}=(Z_{n,j})_{n}$ and for the empirical means $overline{X}^{j}=(sum_{k=1}^{n}X_{k,j}/n)_{n}$ given in recent papers (e.g. Aletti, Crimaldi and Ghiglietti (2019), Ann. Appl. Probab. 27 (2017) 3787–3844, Crimaldi et al. Stochastic Process. Appl. 129 (2019) 70–101). In fact, with a more sophisticated decomposition of the considered processes, we can understand how the different convergence rates of the involved stochastic processes combine. From an application point of view, we provide confidence intervals for the common limit inclination of the agents and a test statistics to make inference on the matrix $W$, based on the weighted empirical means. In particular, we answer a research question posed in Aletti, Crimaldi and Ghiglietti (2019).




em

Convergence of the age structure of general schemes of population processes

Jie Yen Fan, Kais Hamza, Peter Jagers, Fima Klebaner.

Source: Bernoulli, Volume 26, Number 2, 893--926.

Abstract:
We consider a family of general branching processes with reproduction parameters depending on the age of the individual as well as the population age structure and a parameter $K$, which may represent the carrying capacity. These processes are Markovian in the age structure. In a previous paper ( Proc. Steklov Inst. Math. 282 (2013) 90–105), the Law of Large Numbers as $K o infty $ was derived. Here we prove the central limit theorem, namely the weak convergence of the fluctuation processes in an appropriate Skorokhod space. We also show that the limit is driven by a stochastic partial differential equation.




em

Stochastic differential equations with a fractionally filtered delay: A semimartingale model for long-range dependent processes

Richard A. Davis, Mikkel Slot Nielsen, Victor Rohde.

Source: Bernoulli, Volume 26, Number 2, 799--827.

Abstract:
In this paper, we introduce a model, the stochastic fractional delay differential equation (SFDDE), which is based on the linear stochastic delay differential equation and produces stationary processes with hyperbolically decaying autocovariance functions. The model departs from the usual way of incorporating this type of long-range dependence into a short-memory model as it is obtained by applying a fractional filter to the drift term rather than to the noise term. The advantages of this approach are that the corresponding long-range dependent solutions are semimartingales and the local behavior of the sample paths is unaffected by the degree of long memory. We prove existence and uniqueness of solutions to the SFDDEs and study their spectral densities and autocovariance functions. Moreover, we define a subclass of SFDDEs which we study in detail and relate to the well-known fractionally integrated CARMA processes. Finally, we consider the task of simulating from the defining SFDDEs.




em

Convergence and concentration of empirical measures under Wasserstein distance in unbounded functional spaces

Jing Lei.

Source: Bernoulli, Volume 26, Number 1, 767--798.

Abstract:
We provide upper bounds of the expected Wasserstein distance between a probability measure and its empirical version, generalizing recent results for finite dimensional Euclidean spaces and bounded functional spaces. Such a generalization can cover Euclidean spaces with large dimensionality, with the optimal dependence on the dimensionality. Our method also covers the important case of Gaussian processes in separable Hilbert spaces, with rate-optimal upper bounds for functional data distributions whose coordinates decay geometrically or polynomially. Moreover, our bounds of the expected value can be combined with mean-concentration results to yield improved exponential tail probability bounds for the Wasserstein error of empirical measures under Bernstein-type or log Sobolev-type conditions.




em

Robust modifications of U-statistics and applications to covariance estimation problems

Stanislav Minsker, Xiaohan Wei.

Source: Bernoulli, Volume 26, Number 1, 694--727.

Abstract:
Let $Y$ be a $d$-dimensional random vector with unknown mean $mu $ and covariance matrix $Sigma $. This paper is motivated by the problem of designing an estimator of $Sigma $ that admits exponential deviation bounds in the operator norm under minimal assumptions on the underlying distribution, such as existence of only 4th moments of the coordinates of $Y$. To address this problem, we propose robust modifications of the operator-valued U-statistics, obtain non-asymptotic guarantees for their performance, and demonstrate the implications of these results to the covariance estimation problem under various structural assumptions.




em

The fourth characteristic of a semimartingale

Alexander Schnurr.

Source: Bernoulli, Volume 26, Number 1, 642--663.

Abstract:
We extend the class of semimartingales in a natural way. This allows us to incorporate processes having paths that leave the state space $mathbb{R}^{d}$. In particular, Markov processes related to sub-Markovian kernels, but also non-Markovian processes with path-dependent behavior. By carefully distinguishing between two killing states, we are able to introduce a fourth semimartingale characteristic which generalizes the fourth part of the Lévy quadruple. Using the probabilistic symbol, we analyze the close relationship between the generators of certain Markov processes with killing and their (now four) semimartingale characteristics.




em

Consistent semiparametric estimators for recurrent event times models with application to virtual age models

Eric Beutner, Laurent Bordes, Laurent Doyen.

Source: Bernoulli, Volume 26, Number 1, 557--586.

Abstract:
Virtual age models are very useful to analyse recurrent events. Among the strengths of these models is their ability to account for treatment (or intervention) effects after an event occurrence. Despite their flexibility for modeling recurrent events, the number of applications is limited. This seems to be a result of the fact that in the semiparametric setting all the existing results assume the virtual age function that describes the treatment (or intervention) effects to be known. This shortcoming can be overcome by considering semiparametric virtual age models with parametrically specified virtual age functions. Yet, fitting such a model is a difficult task. Indeed, it has recently been shown that for these models the standard profile likelihood method fails to lead to consistent estimators. Here we show that consistent estimators can be constructed by smoothing the profile log-likelihood function appropriately. We show that our general result can be applied to most of the relevant virtual age models of the literature. Our approach shows that empirical process techniques may be a worthwhile alternative to martingale methods for studying asymptotic properties of these inference methods. A simulation study is provided to illustrate our consistency results together with an application to real data.




em

Fuhlbohm family history : a collection of memorabilia of our ancestors and families in Germany, USA, and Australia / by Oscar Fuhlbohm.

Fuhlbohm (Family)




em

List of family history books owned by Roy Klemm.

Family histories -- South Australia -- Bibliography.




em

The Klemm family : descendants of Johann Gottfried Klemm and Anna Louise Klemm : these forebears are honoured and remembered at a reunion at Gruenberg, Moculta 11th-12th March 1995.

Klemm (Family)




em

Fuhlbohm family history : a collection of memorabilia of our ancestors and families in Germany, USA, and Australia / by Oscar Fuhlbohm.

Fuhlbohm (Family)




em

Hubbe family history items

Hubbe (Family)




em

Slow tain to Auschwitz : memoirs of a life in war and peace / Peter Kraus.

Kraus, Peter -- Biography.




em

ACT and Teachers’ Union Partner to Provide Remote Learning Resources Amid Pandemic

ACT and the American Federation of Teachers are partnering to provide free resources as educators increasingly switch to distance learning amid the COVID-19 pandemic.

The post ACT and Teachers’ Union Partner to Provide Remote Learning Resources Amid Pandemic appeared first on Market Brief.




em

Item 02: William Hilton Saunders WWI diary, 1 January 1917 - 24 October 1917




em

Item 04: William Hilton Saunders WWI diary, 18 February 1919 - 8 July 1919




em

Item 03: William Hilton Saunders WWI diary, 1 January 1918 - 31 December 1918




em

Item 01: William Hilton Saunders WWI diary, February 1916 - 2 January 1917




em

Item 05: William Hilton Saunders WWI 1916-1919 address book with poetry




em

Willie Neville Majoribank Chester manuscript collection, 5 November 1915 - 22 December 1918




em

Arthur Leeman Fulton WWI diary, 1 January - 6 August 1916




em

Item 1: George Hugh Morrison diary, 15 January 1916- 1 January 1917




em

Item 2: George Hugh Morrison diary, 1 January 1917-9 October 1917




em

Item 04: Notebook of Colonel Alfred Hobart Sturdee, 8 August 1914 to 25 February 1918




em

Item 01: Captain Vernon Sturdee diary, 25 April, 1915 to 2 July, 1915




em

Item 02: Captain Vernon Sturdee diary, 3 September, 1915- 31 December, 1915




em

Item 03: Captain Vernon Sturdee diary, 22 September, 1915- 23 January, 1916




em

Letter from J. H Bannatyne to Other Windsor Berry Esq. relating to the Myall Creek Massacre, 17 December 1838




em

Item 07: A Journal of ye [the] Proceedings of his Majesty's Sloop Swallow, Captain Phillip [Philip] Carteret Commander, Commencing ye [the] 23 of July 1766 and ended [4 July 1767]




em

Item 08: A Logg [Log] Book of the proceedings on Board His Majesty's Ship Swallow, Captain Philip Carteret Commander Commencing from the 20th August 1766 and Ending [21st May 1768]




em

Item 10: Log book of the Swallow from 22 August 1767 to 4 June 1768 / by Philip Carteret




em

Item 13: Swallow 1767, A journal of the proceedings on Board His Majesty's Sloop Swallow, commencing the 1st of March 1767 and Ended the 7th of July 1767




em

Volume 24 Item 04: William Thomas Manners and customs of Aborigines - Miscellaneous scraps, ca. 1858




em

Item 01: Notebooks (2) containing hand written copies of 123 letters from Major William Alan Audsley to his parents, ca. 1916-ca. 1919, transcribed by his father. Also includes original letters (2) written by Major Audsley.




em

Item 01: Box 1 Views of Brisbane, ca. 1889-1901




em

Item 01: Scorebook of the Aboriginal Cricket Tour of England being a copy in Charles Lawrence's hand, 1868




em

Item 01: Ellis Ashmead-Bartlett diary, 1915-1917




em

Item 01: Ellis Ashmead-Bartlett diary, 1915-1917




em

Item 01: Autograph letter signed, from Hume, Appin, to William E. Riley, concerning an account for money owed by Riley, 4 September 1834




em

Boeing says it's about to start building the 737 Max plane again in the middle of the coronavirus pandemic, even though it already has more planes than it can deliver

Boeing CEO Dave Calhoun said the company was aiming to resume production this month, despite the ongoing grounding and coronavirus pandemic.





em

As Trump returns to the road, some Democrats want to bust Biden out of his basement

While President Donald Trump traveled to the battleground state of Arizona this week, his Democratic opponent for the White House, Joe Biden, campaigned from his basement as he has done throughout the coronavirus pandemic. The freeze on in-person campaigning during the outbreak has had an upside for Biden, giving the former vice president more time to court donors and shielding him from on-the-trail gaffes. "I personally would like to see him out more because he's in his element when he's meeting people," said Tom Sacks-Wilner, a fundraiser for Biden who is on the campaign's finance committee.