em

'We Cannot Police Our Way Out of a Pandemic.' Experts, Police Union Say NYPD Should Not Be Enforcing Social Distance Rules Amid COVID-19

The New York City police department (NYPD) is conducting an internal investigation into a May 2 incident involving the violent arrests of multiple people, allegedly members of a group who were not social distancing





em

The accusation against Joe Biden has Democrats rediscovering the value of due process

Some Democrats took "Believe Women" literally until Joe Biden was accused. Now they're relearning that guilt-by-accusation doesn't serve justice.





em

Coronavirus: Chinese official admits health system weaknesses

China says it will improve public health systems after criticism of its early response to the virus.





em

Learning Semiparametric Regression with Missing Covariates Using Gaussian Process Models

Abhishek Bishoyi, Xiaojing Wang, Dipak K. Dey.

Source: Bayesian Analysis, Volume 15, Number 1, 215--239.

Abstract:
Missing data often appear as a practical problem while applying classical models in the statistical analysis. In this paper, we consider a semiparametric regression model in the presence of missing covariates for nonparametric components under a Bayesian framework. As it is known that Gaussian processes are a popular tool in nonparametric regression because of their flexibility and the fact that much of the ensuing computation is parametric Gaussian computation. However, in the absence of covariates, the most frequently used covariance functions of a Gaussian process will not be well defined. We propose an imputation method to solve this issue and perform our analysis using Bayesian inference, where we specify the objective priors on the parameters of Gaussian process models. Several simulations are conducted to illustrate effectiveness of our proposed method and further, our method is exemplified via two real datasets, one through Langmuir equation, commonly used in pharmacokinetic models, and another through Auto-mpg data taken from the StatLib library.




em

Bayesian Design of Experiments for Intractable Likelihood Models Using Coupled Auxiliary Models and Multivariate Emulation

Antony Overstall, James McGree.

Source: Bayesian Analysis, Volume 15, Number 1, 103--131.

Abstract:
A Bayesian design is given by maximising an expected utility over a design space. The utility is chosen to represent the aim of the experiment and its expectation is taken with respect to all unknowns: responses, parameters and/or models. Although straightforward in principle, there are several challenges to finding Bayesian designs in practice. Firstly, the utility and expected utility are rarely available in closed form and require approximation. Secondly, the design space can be of high-dimensionality. In the case of intractable likelihood models, these problems are compounded by the fact that the likelihood function, whose evaluation is required to approximate the expected utility, is not available in closed form. A strategy is proposed to find Bayesian designs for intractable likelihood models. It relies on the development of an automatic, auxiliary modelling approach, using multivariate Gaussian process emulators, to approximate the likelihood function. This is then combined with a copula-based approach to approximate the marginal likelihood (a quantity commonly required to evaluate many utility functions). These approximations are demonstrated on examples of stochastic process models involving experimental aims of both parameter estimation and model comparison.




em

Scalable Bayesian Inference for the Inverse Temperature of a Hidden Potts Model

Matthew Moores, Geoff Nicholls, Anthony Pettitt, Kerrie Mengersen.

Source: Bayesian Analysis, Volume 15, Number 1, 1--27.

Abstract:
The inverse temperature parameter of the Potts model governs the strength of spatial cohesion and therefore has a major influence over the resulting model fit. A difficulty arises from the dependence of an intractable normalising constant on the value of this parameter and thus there is no closed-form solution for sampling from the posterior distribution directly. There is a variety of computational approaches for sampling from the posterior without evaluating the normalising constant, including the exchange algorithm and approximate Bayesian computation (ABC). A serious drawback of these algorithms is that they do not scale well for models with a large state space, such as images with a million or more pixels. We introduce a parametric surrogate model, which approximates the score function using an integral curve. Our surrogate model incorporates known properties of the likelihood, such as heteroskedasticity and critical temperature. We demonstrate this method using synthetic data as well as remotely-sensed imagery from the Landsat-8 satellite. We achieve up to a hundredfold improvement in the elapsed runtime, compared to the exchange algorithm or ABC. An open-source implementation of our algorithm is available in the R package bayesImageS .




em

Bayes Factors for Partially Observed Stochastic Epidemic Models

Muteb Alharthi, Theodore Kypraios, Philip D. O’Neill.

Source: Bayesian Analysis, Volume 14, Number 3, 927--956.

Abstract:
We consider the problem of model choice for stochastic epidemic models given partial observation of a disease outbreak through time. Our main focus is on the use of Bayes factors. Although Bayes factors have appeared in the epidemic modelling literature before, they can be hard to compute and little attention has been given to fundamental questions concerning their utility. In this paper we derive analytic expressions for Bayes factors given complete observation through time, which suggest practical guidelines for model choice problems. We adapt the power posterior method for computing Bayes factors so as to account for missing data and apply this approach to partially observed epidemics. For comparison, we also explore the use of a deviance information criterion for missing data scenarios. The methods are illustrated via examples involving both simulated and real data.




em

Jointly Robust Prior for Gaussian Stochastic Process in Emulation, Calibration and Variable Selection

Mengyang Gu.

Source: Bayesian Analysis, Volume 14, Number 3, 877--905.

Abstract:
Gaussian stochastic process (GaSP) has been widely used in two fundamental problems in uncertainty quantification, namely the emulation and calibration of mathematical models. Some objective priors, such as the reference prior, are studied in the context of emulating (approximating) computationally expensive mathematical models. In this work, we introduce a new class of priors, called the jointly robust prior, for both the emulation and calibration. This prior is designed to maintain various advantages from the reference prior. In emulation, the jointly robust prior has an appropriate tail decay rate as the reference prior, and is computationally simpler than the reference prior in parameter estimation. Moreover, the marginal posterior mode estimation with the jointly robust prior can separate the influential and inert inputs in mathematical models, while the reference prior does not have this property. We establish the posterior propriety for a large class of priors in calibration, including the reference prior and jointly robust prior in general scenarios, but the jointly robust prior is preferred because the calibrated mathematical model typically predicts the reality well. The jointly robust prior is used as the default prior in two new R packages, called “RobustGaSP” and “RobustCalibration”, available on CRAN for emulation and calibration, respectively.




em

Semiparametric Multivariate and Multiple Change-Point Modeling

Stefano Peluso, Siddhartha Chib, Antonietta Mira.

Source: Bayesian Analysis, Volume 14, Number 3, 727--751.

Abstract:
We develop a general Bayesian semiparametric change-point model in which separate groups of structural parameters (for example, location and dispersion parameters) can each follow a separate multiple change-point process, driven by time-dependent transition matrices among the latent regimes. The distribution of the observations within regimes is unknown and given by a Dirichlet process mixture prior. The properties of the proposed model are studied theoretically through the analysis of inter-arrival times and of the number of change-points in a given time interval. The prior-posterior analysis by Markov chain Monte Carlo techniques is developed on a forward-backward algorithm for sampling the various regime indicators. Analysis with simulated data under various scenarios and an application to short-term interest rates are used to show the generality and usefulness of the proposed model.




em

Alleviating Spatial Confounding for Areal Data Problems by Displacing the Geographical Centroids

Marcos Oliveira Prates, Renato Martins Assunção, Erica Castilho Rodrigues.

Source: Bayesian Analysis, Volume 14, Number 2, 623--647.

Abstract:
Spatial confounding between the spatial random effects and fixed effects covariates has been recently discovered and showed that it may bring misleading interpretation to the model results. Techniques to alleviate this problem are based on decomposing the spatial random effect and fitting a restricted spatial regression. In this paper, we propose a different approach: a transformation of the geographic space to ensure that the unobserved spatial random effect added to the regression is orthogonal to the fixed effects covariates. Our approach, named SPOCK, has the additional benefit of providing a fast and simple computational method to estimate the parameters. Also, it does not constrain the distribution class assumed for the spatial error term. A simulation study and real data analyses are presented to better understand the advantages of the new method in comparison with the existing ones.




em

An Overview of Semiparametric Extensions of Finite Mixture Models

Sijia Xiang, Weixin Yao, Guangren Yang.

Source: Statistical Science, Volume 34, Number 3, 391--404.

Abstract:
Finite mixture models have offered a very important tool for exploring complex data structures in many scientific areas, such as economics, epidemiology and finance. Semiparametric mixture models, which were introduced into traditional finite mixture models in the past decade, have brought forth exciting developments in their methodologies, theories, and applications. In this article, we not only provide a selective overview of the newly-developed semiparametric mixture models, but also discuss their estimation methodologies, theoretical properties if applicable, and some open questions. Recent developments are also discussed.




em

Rejoinder: Bayes, Oracle Bayes, and Empirical Bayes

Bradley Efron.

Source: Statistical Science, Volume 34, Number 2, 234--235.




em

Comment: Variational Autoencoders as Empirical Bayes

Yixin Wang, Andrew C. Miller, David M. Blei.

Source: Statistical Science, Volume 34, Number 2, 229--233.




em

Comment: Empirical Bayes, Compound Decisions and Exchangeability

Eitan Greenshtein, Ya’acov Ritov.

Source: Statistical Science, Volume 34, Number 2, 224--228.

Abstract:
We present some personal reflections on empirical Bayes/ compound decision (EB/CD) theory following Efron (2019). In particular, we consider the role of exchangeability in the EB/CD theory and how it can be achieved when there are covariates. We also discuss the interpretation of EB/CD confidence interval, the theoretical efficiency of the CD procedure, and the impact of sparsity assumptions.




em

Comment: Empirical Bayes Interval Estimation

Wenhua Jiang.

Source: Statistical Science, Volume 34, Number 2, 219--223.

Abstract:
This is a contribution to the discussion of the enlightening paper by Professor Efron. We focus on empirical Bayes interval estimation. We discuss the oracle interval estimation rules, the empirical Bayes estimation of the oracle rule and the computation. Some numerical results are reported.




em

Comment: Bayes, Oracle Bayes and Empirical Bayes

Aad van der Vaart.

Source: Statistical Science, Volume 34, Number 2, 214--218.




em

Comment: Bayes, Oracle Bayes, and Empirical Bayes

Nan Laird.

Source: Statistical Science, Volume 34, Number 2, 206--208.




em

Comment: Bayes, Oracle Bayes, and Empirical Bayes

Thomas A. Louis.

Source: Statistical Science, Volume 34, Number 2, 202--205.




em

Bayes, Oracle Bayes and Empirical Bayes

Bradley Efron.

Source: Statistical Science, Volume 34, Number 2, 177--201.

Abstract:
This article concerns the Bayes and frequentist aspects of empirical Bayes inference. Some of the ideas explored go back to Robbins in the 1950s, while others are current. Several examples are discussed, real and artificial, illustrating the two faces of empirical Bayes methodology: “oracle Bayes” shows empirical Bayes in its most frequentist mode, while “finite Bayes inference” is a fundamentally Bayesian application. In either case, modern theory and computation allow us to present a sharp finite-sample picture of what is at stake in an empirical Bayes analysis.




em

Jennifer Lopez Is Wearing the Hell Out of These $60 Sneakers—and You Can Buy Them at Zappos

The chic sneaks are part of Zappos' massive Cyber Monday sale.




em

Jennifer Lopez Just Stepped Out in These Glittery Leggings (Again)—and We Found Them on Sale

They’re already going out of stock.




em

Shoppers Swear These $30 Colorfulkoala Leggings Are the Ultimate Lululemon Dupes

And they’re available in 19 fun prints.




em

Allometric Analysis Detects Brain Size-Independent Effects of Sex and Sex Chromosome Complement on Human Cerebellar Organization

Catherine Mankiw
May 24, 2017; 37:5221-5231
Development Plasticity Repair




em

Memory and Brain Systems: 1969-2009

Larry R. Squire
Oct 14, 2009; 29:12711-12716
40th Anniversary Retrospective




em

Microglia Actively Remodel Adult Hippocampal Neurogenesis through the Phagocytosis Secretome

Irune Diaz-Aparicio
Feb 12, 2020; 40:1453-1482
Development Plasticity Repair




em

The Representation of Semantic Information Across Human Cerebral Cortex During Listening Versus Reading Is Invariant to Stimulus Modality

Fatma Deniz
Sep 25, 2019; 39:7722-7736
BehavioralSystemsCognitive




em

Fingolimod Rescues Demyelination in a Mouse Model of Krabbe's Disease

Sibylle Béchet
Apr 8, 2020; 40:3104-3118
Neurobiology of Disease




em

Dural Calcitonin Gene-Related Peptide Produces Female-Specific Responses in Rodent Migraine Models

Amanda Avona
May 29, 2019; 39:4323-4331
Systems/Circuits




em

Where Is the Anterior Temporal Lobe and What Does It Do?

Michael F. Bonner
Mar 6, 2013; 33:4213-4215
Journal Club




em

Grey Matter Volume Differences Associated with Extremely Low Levels of Cannabis Use in Adolescence

Catherine Orr
Mar 6, 2019; 39:1817-1827
BehavioralSystemsCognitive




em

Indigenous peoples and dementia : new understandings of memory loss and memory care

9780774837835 (hardcover)




em

Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state

CJ Pike
Apr 1, 1993; 13:1676-1687
Articles




em

Neural Mechanisms of Visual Working Memory in Prefrontal Cortex of the Macaque

Earl K. Miller
Aug 15, 1996; 16:5154-5167
Articles




em

Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases

M Niethammer
Apr 1, 1996; 16:2157-2163
Articles




em

A selective impairment of motion perception following lesions of the middle temporal visual area (MT)

WT Newsome
Jun 1, 1988; 8:2201-2211
Articles




em

Neurons Containing Hypocretin (Orexin) Project to Multiple Neuronal Systems

Christelle Peyron
Dec 1, 1998; 18:9996-10015
Articles




em

A framework for mesencephalic dopamine systems based on predictive Hebbian learning

PR Montague
Mar 1, 1996; 16:1936-1947
Articles




em

The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs

WR Softky
Jan 1, 1993; 13:334-350
Articles




em

Cortical Excitatory Neurons and Glia, But Not GABAergic Neurons, Are Produced in the Emx1-Expressing Lineage

Jessica A. Gorski
Aug 1, 2002; 22:6309-6314
BRIEF COMMUNICATION




em

Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1

Geoffrey M. Boynton
Jul 1, 1996; 16:4207-4221
Articles




em

Rassegna trimestrale BRI settembre 2017: Le prospettive positive in un contesto di bassa inflazione alimentano l'assunzione di rischio

Italian translation of the BIS press release about the BIS Quarterly Review, September 2017




em

Rassegna trimestrale BRI, settembre 2017

Italian translation of the BIS Quarterly Review, September 2017




em

Rassegna trimestrale BRI, dicembre 2017

Italian translation of the BIS Quarterly Review, December 2017




em

Rassegna trimestrale BRI dicembre 2017: Un paradossale inasprimento ci riporta all'enigma del mercato obbligazionario

Italian translation of the BIS press release about the BIS Quarterly Review, December 2017




em

Rassegna trimestrale BRI, settembre 2018

Italian translation of the BIS Quarterly Review, September 2018




em

Rassegna trimestrale BRI, dicembre 2018

Italian translation of the BIS Quarterly Review, December 2018




em

Le Comité de Bâle finalise sa revue du traitement réglementaire des expositions aux actifs souverains sans modifier les règles existantes et publie un document de discussion

French translation of the press release about the Basel Committee publishing a discussion paper on "The regulatory treatment of sovereign exposures" (7 December 2017)




em

Questions fréquemment posées sur les exigences de fonds propres en regard du risque de marché

French translation of "Frequently asked questions on market risk capital requirements" by the Basel Committee, March 2018.




em

Le Communiqué de Bâle finalise les principes relatifs aux tests de résistance, passe en revue les moyens pour mettre fin aux comportements d'arbitrage réglementaire, s'accorde sur la liste annuelle des G-SIB et discute du ratio

French translation of press release - the Basel Committee on Banking Supervision is finalising stress-testing principles, reviews ways to stop regulatory arbitrage behaviour, agrees on annual G-SIB list, discusses leverage ratio, crypto-assets, market risk framework and implementation, 20 September 2018.




em

Rapport trimestriel BRI, septembre 2018

French translation of the BIS Quarterly Review, September 2018